VALIDATION OF THE UNILIB FORTRAN LIBRARY

Hélène Schmitz, Université catholique de Louvain, Institut de Physique Nucléaire, B-1348, Louvain-La-Neuve, Belgium

Andrew Orr and Joseph Lemaire, Belgian Institute for Space Aeronomy, Avenue Circulaire 3, B-1180 Brussels, Belgium

August 2000

This study was supported, under contract No. BL/10/B07, by the Bulgarian-Belgian Cooperation Project Agreement: LIULIN-4.

Preface

The aim of this study is to validate and determine the limitations of some of the basic subroutines forming the UNILIB (version 2.03) software tool. UNILIB was developed at the Belgian Institute for Space Aeronomy (BIRA-IASB), by M. Kruglanski, under the TREND-3 project. This project was suported by ESA (contract No. 10725/94/NL/JG). The Technical Project Manager was E. Daly, ESTEC/TOS-EMA, Noordwijck.

The UNILIB package is a basic software toolkit for Radiation Belt modelling and development. It is currently used in the magnetospheric modelling community. It is a public and user friendly software, compiled for most computer operating systems, and accessed freely via the Internet at http://www.magnet.oma.be/home/unilib/home.html.

The calculation of B, the magnetic field intensity at the location of a satellite, using the UNILIB software, for a variety of geomagnetic field models (internal IGRF as well as external magnetospheric models), was validated by comparing with equivalent data computed using software available at various data centers in the World.

Similar comparisons were performed for the calculation of I, the second adiabatic invariant, and the associated L-parameter introduced by McIlwain [8]. This benchmark study led us to quantify the relative error and limitations inherent for the relevant subroutines. Improvements to these subroutines, easily implemented in a future version of UNILIB, were detailed.

Besides the frequently calculated values of B and L, McIlwain's classical coordinates of a drift shell, the accuracy and CPU time of the UNILIB algorithm to calculate the minimum altitude $h_{\min }$ of a drift shell was examined. The calculation of this minimum altitude was performed using UNILIB drift shell tracing routines [either UD315 (search the mirror point of lowest altitude) or UD317 (trace a magnetic drift shell [new])] for different geomagnetic models (for the ideal case of a centered dipole an analytical expression is available while for the internal IGRF model an alternative method of evaluating $h_{\text {min }}$ was devised). This benchmark study led us to propose a slight improvement to the UNILIB package so that $h_{\min }$ is calculated with an error less than 1 km (for all possible (B, L) drift shells). This improvement, at the expense of a somewhat increased CPU time, could, again, be easily implemented in a future version of UNILIB.

Some of the UNILIB subroutines (version 2.03) were used in building the LMDB database of LIULIN dose and flux measurements collected on board the MIR station. The calculations of B, I, L and $h_{\min }$ in the database will be recalculated using the improved versions of the subroutines.

J Lemaire, August 2000

Acknowledgements

This study has been supported by the 'Contrat de Recherche No. BL/10/B07’ under the 'Agreement for Execution of the joint Bulgarian-Belgian Research project on the Analysis and Modelling of long-term variations of the near Earth's radiation environment with the LIULIN-4 detector on board of the International Space Station'.

We wish to acknowledge the SSTC, Service du Pemier Ministre de Belgique, Service Fédéraux des Affaires Scientifiques, Techniques et Culturelles.

We would like to acknowledge the Rector of the Université catholique de Louvain, where this contract has been administrated, and the Chairman of the Institute of Nuclear Physics (FYNU) where this study was completed.

Our special thanks go to Professor Gh. Grégoire (FYNU) for his hospitality and advice during this work. The discussions with Drs Mathias Cyamukungu (FYNU), Michel Kruglanski (IASB) and Daniel Heynderickx (BIRA) have been most stimulating and useful. Thanks to them all for the time they have spent to discuss and counsel with us.

We wish to acknowledge Dr Isvetan Dachev, head of the Solar Terrestrial Influence Laboratory (STIL) of the Bulgarian Academy of Sciences in Sofia, for providing the LIULIN-4 data collected on board the Russian MIR station.
J. Lemaire wishes to thank Rositza Koleva, Boby Tomov and Yuri Matchivutck for the database and software development they have carried out at IASB-BIRA as part of this Bulgarian-Belgian cooperation agreement.

Abstract

This report validates the UNILIB library (version 2.03) as a reliable and accurate method for the computation of geomagnetic quantities, specifically, the geomagnetic field strength B, the adiabatic invariant I, McIlwain's magnetic shell parameter L and the altitude of the lowest mirror point $h_{\min }$. In addition, besides some other miscellaneous quantities, such as the modified Julian Day, it is shown that the library accurately implements all commonly used coordinate transformations. The library was validated against NASA's library GEOPACK (NASA's equivalent of UNILIB), the NSSDC program BILCAL, and against results from specially written Fortran programs, for the simple centered and aligned dipole model, the more realistic IGRF model and Tsyganenko's external field model. It is shown that by increasing the number of steps used to trace a field line the accuracy of I, L and $h_{\text {min }}$ can be improved beyond the already excellent accuracy, though at the expense of computation time. A recommendation is proposed that an input parameter is introduced within UNILIB allowing the user to choose the relative accuracy that a field line is traced and $h_{\min }$ is calculated.

1. Introduction

The UNILIB library [1] was developed by the Belgian Institute for Space Aeronomy as a useful tool for the TREND project (Trapped Radiation ENvironment Development). The purpose of TREND was to improve the radiation environment models and software used to predict the radiation experienced by spacecraft and satellites as they orbit the Earth.

The library consists of FORTRAN subroutines which enable computation of the geomagnetic field strength, to evaluate averaged quantities along a drift trajectory and to trace magnetic field lines and drift shells. As well as the widely used $\left(B_{m}, L\right)$ coordinates, the library enables evaluation of parameters such as the magnetic field intensity, the McIlwain parameter L, the third adibatic invariant I, the altitude of the lowest mirror point $h_{\min }$, etc. The aim of this report is to validate the UNILIB library (version 2.03) against the ‘benchmark’ NASA library GEOPACK [2] (GEOPACK is a Fortran library supplying subroutines for the calculation of geomagnetic quantities), the NSSDC program BILCAL [3] (BILCAL is a software package calculating geomagnetic field strength and L for the IGRF (International Geomagnetic Reference Field) model), as well as against specially written Fortran programs. Much of the validation involves the 'simple' centered and aligned dipole model (referred to as the centered dipole model) of the Earth's internal field in which many of the geomagnetic quantities under investigation can be easily evaluated. UNILIB's implementation of the more realistic IGRF internal field model or Tsyganenko's external field model is then validated.

The UNILIB library consists of Fortran subroutines which are classified into three groups: (1) main subroutines, (2) internal subroutines and (3) miscellaneous subroutines. The main subroutines are 'top-level' subroutines which compute the geomagnetic quantities mentioned above. The internal subroutines are subroutines called by other subroutines of the library. The miscellaneous subroutines, though used by the main subroutines, may also be used directly for general calculations such as coordinates, coordinate transformation, modifed Julian Day, etc.

In the library, geographic positions are expressed, as often as possible, in Geocentric Equatorial (GEO) coordinates. However, the library allows conversion to other coordinate systems such as Geocentric Equatorial Inertial (GEI), Geomagnetic (MAG), etc. In chapter 2, the different coordinate systems allowed by UNILIB are discussed and the subroutines that implement conversion from one coordinate system to another are validated by comparing geographic positions computed using UNILIB with equivalent positions computed using GEOPACK subroutines. Results confirming the accurate evaluation of modified Julian Day are also presented.

In chapter 3, UNILIB is applied to evaluate the geomagnetic field vector B. UNILIB results were in good agreement with results from 'exact' mathematical formulas for the
centered dipole model. For the IGRF model, field values computed using UNILIB were in good agreement with equivalent results computed using both GEOPACK and BILCAL. Finally, for Tsyganenko’s external field model, field values computed using UNILIB were in good agreement with equivalent results computed using GEOPACK.

In chapter 4, UNILIB is applied to evaluate the integral invariant I. UNILIB results for the centered dipole model were in good agreement, a relative error of approximately 10^{-5} at low latitudes to 10^{-6} at high latitudes, with 'exact' solutions. It is shown that the 'Runge-Kutta adaptive' method accurately solves the required ordinary differential equations needed to trace the field line and produce an accurate estimation of I. UNILIB results for the IGRF model were in good agreement, a relative error of 10^{-3} at low latitudes to 10^{-4} at high latitudes, with results computed using this method. This is better than the accuracy generally needed by modellers to determine the value of I.

In chapter 5, UNILIB is applied to evaluate McIlwain’s magnetic shell L parameter. UNILIB results for the centered dipole model were in good agreement, a relative error of 10^{-4} at low latitudes to 10^{-5} at high latitudes, with 'exact' solutions. For the IGRF model, UNILIB results were in good agreement, a relative error of 10^{-4}, with values computed from I computed using the 'Runge-Kutta adaptive' method of chapter 4 (L is computed from I by applying the Hilton function). Again this is better than the accuracy needed by modellers to calculate L. Results confirming the accurate evaluation of the arc length l of a magnetic field line between two mirror points are also presented.

It is shown that the accuracy of both I and L returned by UNILIB increases, at the expense of computation time, if the number of steps used to trace the field line is increased. This is achieved by modifying the parameters prop and stepx within common block UC190 (control parameters, set 1). [prop (default value 0.2) determines the number of steps used to trace a field line and stepx (default value 0.075) is the maximum step size.] Using modified values prop $=0.02$ and step $x=0.02$ the relative error in calculating I for the IGRF model was between 10^{-4} and 10^{-5}, while the relative error in calculating L for the IGRF model was between 10^{-6} and 10^{-7}. It is recommended that an input parameter is introduced to the subroutines that allows the user to specify either the accuracy of I or L required, or the accuracy with which the field line is traced.

In chapter 6, UNILIB is applied, for a given magnetic field and drift shell, to evaluate $h_{\min }$ (the lowest altitude mirror point). For the centered dipole model, the maximum disagreement between UNILIB and 'exact' solutions was 2 km . For the IGRF model, the maximum disagreement between UNILIB and comparison values was $2.5 \mathrm{~km}\left(h_{\min }\right.$ was evaluated by locating the intercept of the line of constant B with the line of constant L). Note that the maximum disagreement was for points far from the Earth's surface, for points close to the Earth's surface the disagreement, for both models, was typically less than 0.5 km . It is shown that the maximum disagreement reduces to less than 0.3 km using modified values $p r o p=0.02$ and stepx $=0.02$. It is recommended that a parameter be introduced allowing the user to specify the accuracy of $h_{\text {min }}$.

2. Transformation between coordinate systems

Within UNILIB, geographic positions are expressed, as often as possible, in the Geographic (GEO) coordinate system, i.e. geocentric coordinates of longitude, colatitude and radial distance from the center of the Earth. However, UNILIB contains subroutines which allow conversion between geocentric and geodetic coordinates (positions are given with respect to the Earth's geoid) [subroutines UM535 (geocentric to geodentic transformation) and UM536 (geodetic to geocentric transformation)] and between GEO and Geocentric Equatorial Inertial (GEI), Geomagnetic (MAG), Solar Magnetic (SM) and Geocentric Solar Magnetospheric (GSM) coordinate systems [4] [subroutines UT550 (select a coordinate transformation) and UT555 (coordinate conversion)]. [UT550 initializes the coordinate system and UT555 applies the computed transformation.]

This chapter will compare the results of transforming geographic positions (points on the Earth's surface at 0° longitude and varying latitude λ) from GEO to GSM, GEO to MAG, GSM to GSE, MAG to SM and GEO to GEI using UNILIB subroutines with the equivalent transformations using GEOPACK subroutines.

As GEOPACK performs coordinate transformations in cartesian coordinates (x, y, z), while UNILIB uses spherical coordinates (ρ, θ, ϕ), UNILIB results were converted to cartesian coordinates to allow comparison (section 2.1).

2.1. Transformation from spherical to cartesian coordinates

Table 2.1 compares geographic positions (on the Earth’s surface at 0° longitude), in cartesian coordinates, computed using UNILIB and GEOPACK subroutines. UNILIB's subroutine UT541 (convert spherical to cartesian coordinates) transforms the geographic positions from spherical to cartesian coordinates The two sets of data are in excellent agreement, as indicated by an average difference in the x coordinates of 20.5 cm and in the z coordinates of 17.5 cm .

λ / \circ	x / km		y / km		z / km	
	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK
-70	2187.93573	2187.93555	0.00000	0.00000	-5971.06087	-5971.06104
-60	3197.11636	3197.11663	0.00000	0.00000	-5500.49628	-5500.49623
-50	4107.87915	4107.87968	0.00000	0.00000	-4862.80588	-4862.80569
-40	4892.72545	4892.72531	0.00000	0.00000	-4077.99963	-4077.99995
-30	5528.27671	5528.27650	0.00000	0.00000	-3170.38461	-3170.38482
-20	5995.85808	5995.85801	0.00000	0.00000	-2167.70420	-2167.70404
-10	6281.89550	6281.89558	0.00000	0.00000	-1100.25230	-1100.25260
0	6378.16000	6378.16016	0.00000	0.00000	0.00000	0.00000
10	6281.89550	6281.89558	0.00000	0.00000	1100.25230	1100.25260
20	5995.85808	5995.85801	0.00000	0.00000	2167.70420	2167.70404
30	5528.27671	5528.27672	0.00000	0.00000	3170.38461	3170.38445
40	4892.72545	4892.72558	0.00000	0.00000	4077.99963	4077.99963
50	4107.87915	4107.87936	0.00000	0.00000	4862.80588	4862.80596
60	3197.11636	3197.11644	0.00000	0.00000	5500.49628	5500.49634
70	2187.93573	2187.93575	0.00000	0.00000	5971.06087	5971.06097

Table 2.1 Transformation from cartesian to spherical coordinates of points located at the Earth's surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 1985.

The UNILIB subroutine UT546 (convert cartesian coordinates to spherical coordinates) converts from cartesian to spherical coordinates. This was simply checked by transforming the data of Table 2.1 back into spherical coordinates where it was seen to match the initial UNILIB spherical coordinate data.

2.2. Transformation from GEO to GSM coordinates

Table 2.2 shows results of transforming from GEO to GSM coordinate system. UNILIB data is computed using subroutines UT550 and UT555 and is compared with equivalent GEOPACK data. Comparing the two sets of data, the average difference in the x coordinates is approximately 10 m , y coordinates 469 m and z coordinates 114 m . The disagreement between UNILIB and GEOPACK data is greater at low latitudes than high latitudes.

$\lambda /{ }^{\circ}$	x / km		y / km		z / km	
	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK
-70	321.975	321.991	1315.928	1315.677	-6213.316	-6213.369
-60	-790.758	-790.743	1322.944	1322.595	-6172.644	-6172.721
-50	-1878.288	-1878.276	1289.644	1289.208	-5943.939	-5944.037
-40	-2907.485	-2907.475	1217.174	1216.665	-5534.786	-5534.904
-30	-3847.329	-3847.321	1107.866	1107.299	-4958.213	-4958.346
-20	-4669.782	-4669.777	965.132	964.524	-4232.129	-4232.273
-10	-5350.505	-5350.503	793.337	792.706	-3378.681	-3378.832
0	-5869.420	-5869.422	597.656	597.022	-2423.559	-2423.712
10	-6211.164	-6211.168	383.935	383.317	-1395.280	-1395.431
20	-6365.442	-6365.449	158.533	157.950	-324.457	-324.601
30	-6327.323	-6327.333	-71.828	-72.360	756.969	756.835
40	-6097.451	-6097.463	-300.243	-300.706	1816.533	1816.415
50	-5682.159	-5682.173	-519.798	-520.179	2822.133	2822.034
60	-5093.453	-5093.470	-723.782	-724.068	3742.978	3742.901
70	-4348.815	-4348.832	-905.894	-906.077	4550.582	4550.529

Table 2.2 Transformation from GEO to GSM coordinates of points located at the Earth's surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 1985.

2.3. Transformation from GEO to MAG coordinates

Table 2.3 shows the results of transforming from GEO to MAG coordinate system. The UNILIB and GEOPACK data are in excellent agreement. The average difference in the x coordinates is 9 m and in the y and z coordinates 4 m .

λ / \circ	x / km		y / km		z / km	
	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK
-70	1844.816	1844.816	2067.435	2067.434	-5723.897	-5723.897
-60	2079.018	2079.004	3021.035	3021.037	-5198.851	-5198.854
-50	2249.641	2249.626	3881.637	3881.640	-4515.924	-4515.928
-40	2351.677	2351.663	4623.258	4623.260	-3696.478	-3696.483
-30	2382.267	2382.253	5223.806	5223.810	-2765.835	-2765.840
-20	2340.716	2340.702	5665.635	5665.639	-1752.394	-1752.401
-10	2228.457	2228.444	5935.919	5935.923	-686.742	-686.748
0	2048.961	2048.950	6026.882	6026.886	399.227	399.222
10	1807.616	1807.607	5935.919	5935.923	1473.146	1473.141
20	1511.581	1511.573	5665.635	5665.640	2502.991	2502.986
30	1169.612	1169.606	5223.806	5223.810	3457.896	3457.892
40	791.864	791.861	4623.258	4623.261	4308.977	4308.974
50	389.643	389.642	3881.637	3881.640	5030.172	5030.169
60	-24.893	-24.891	3021.035	3021.037	5599.084	5599.083
70	-439.083	-439.079	2067.435	2067.436	5997.796	5997.795

Table 2.3 Transformation from GEO to MAG coordinates of points located at the Earth's surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 1985.

2.4. Transformation from GSM to GSE coordinates

Table 2.4 shows the results of transforming from GSM to GSE coordinate system. As UNILIB works in the GEO coordinate system, a GSM to GSE transformation requires subroutine UT555 to preform an initial transformation from GEO to GSM. Comparing UNILIB with GEOPACK data, the x and z coordinates are in excellent agreement with average differences of 10 m and 17 m respectively. A relatively large disagreement of 399 m is seen between the y coordinate data (this is expected as the results of Table 2.2 show that the initial transformation of GEO to GSM has an average difference in the y coordinates of 469 m , limiting the accuracy of the GSM to GSE transformation).

λ / \circ	x / km		y / km		z / km	
	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK
-70	321.975	321.993	-468.862	-468.803	-6333.809	-6333.812
-60	-790.758	-790.743	-450.783	-450.826	-6296.706	-6296.705
-50	-1878.288	-1878.275	-418.987	-419.132	-6067.787	-6067.781
-40	-2907.486	-2907.474	-374.490	-374.731	-5654.656	-5654.645
-30	-3847.329	-3847.321	-318.683	-319.013	-5070.472	-5070.458
-20	-4669.782	-4669.777	-253.286	-253.694	-4333.387	-4333.369
-10	-5350.505	-5350.503	-180.282	-180.757	-3465.886	-3465.864
0	-5869.421	-5869.422	-101.864	-102.391	-2494.084	-2494.060
10	-6211.164	-6211.168	-20.370	-20.934	-1446.996	-1446.971
20	-6365.442	-6365.450	61.770	61.187	-355.794	-355.768
30	-6327.324	-6327.334	142.103	141.518	746.973	746.999
40	-6097.451	-6097.463	218.209	217.641	1828.202	1828.228
50	-5682.159	-5682.173	287.776	287.241	2855.138	2855.163
60	-5093.454	-5093.470	348.663	348.178	3796.338	3796.360
70	-4348.815	-4348.832	398.976	398.556	4622.690	4622.710

Table 2.4 Transformation from GSM to GSE coordinates of points located at the Earth's surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 1985.

2.5. Transformation from MAG to SM coordinates

Table 2.5 shows the results of transforming from MAG to SM coordinate system, again requiring UNILIB to preform an initial transformation from GEO to MAG. As with the GSM to GSE transformation, the x and z coordinates are in very good agreement with average differences of 76 and 4 m respectively, while the y coordinates disagree quite appreciably with an average disagreement of 467 m (the disagreement being greater at low latitudes than high latitudes).

$\lambda /{ }^{\circ}$	x / km		y / km		Z / km	
	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK
-70	-2438.435	-2438.563	1315.928	1315.689	-5723.897	-5723.897
-60	-3420.349	-3420.477	1322.944	1322.595	-5198.851	-5198.854
-50	-4297.070	-4297.195	1289.644	1289.208	-4515.924	-4515.928
-40	-5042.161	-5042.279	1217.174	1216.665	-3696.478	-3696.483
-30	-5633.469	-5633.577	1107.866	1107.299	-2765.835	-2765.840
-20	-6053.668	-6053.762	965.133	964.524	-1752.394	-1752.401
-10	-6290.610	-6290.688	793.337	792.706	-686.742	-686.748
0	-6337.535	-6337.594	597.656	597.022	399.227	399.222
10	-6193.158	-6193.197	383.935	383.317	1473.146	1473.141
20	-5861.669	-5861.687	158.533	157.950	2502.991	2502.986
30	-5352.661	-5352.656	-71.828	-72.360	3457.896	3457.892
40	-4680.963	-4680.935	-300.243	-300.706	4308.977	4308.974
50	-3866.360	-3866.311	-519.798	-520.179	5030.172	5030.169
60	-2933.157	-2933.088	-723.782	-724.068	5599.084	5599.083
70	-1909.565	-1909.478	-905.894	-906.077	5997.796	5997.795

Table 2.5 Transformation from MAG to SM coordinates of points located at the Earth's surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 1985.

2.6. Transformation from GEO to GEI coordinates

Since the GEO and GEI coordinate systems have their z-axis in common [4] (parallel to the Earth's rotation axis), the transformation from GEO to GEI is easily implemented by UNILIB as it simply requires a rotation about the z-axis.

2.7. Modified Julian Day

Astronomers who need to deal with events separated by large time spans use 'Julian Day' to refer to time. The Julian Day is the number of days that has elapsed since noon, $1^{\text {st }}$ of January, 4713 BC. The modified Julian Day (MDJ), as defined by Scaliger, began at midnight, November 17, 1858. A second version of MDJ, as defined by Klinkard, began at midday, $1^{\text {st }}$ of January, 1950. The difference between the starting times of the two versions of MJD is 33282.5 days.

UNILIB subroutine UT540 (compute modified Julian Day from date) converts an 'actual' date into MJD (Klinkard version). Accurate evaluation of MJD within UNILIB is of great importance, as it is required, for example, to evaluate the geomagnetic field, for coordinate systems such as SM or GSE which are dependent on the suns position.

Table 2.6 shows results of converting two actual dates (column 1) into MJD (Klinkard) using subroutine UT540 (column 2). The results of converting the dates to MJD (Scaliger) are shown in column 3. For each of the dates the difference between MJD (Klinkard) and MJD (Scalinger) is, as expected, 33282.5 days (column 4), indicating that subroutine UT540 accurately calculates modified Julian Day.

Subroutine UT545 (compute date from modified Julian Day) performs the reverse transformation from MJD (Klinkard) into the date. Applying this transformation to the column 2 data returned the initial dates of column 1.

Date	MDJ (Klinkard)	MDJ (Scaliger)	Difference
$1 / 1 / 1985$	12784	46066.5	33282.5
$5 / 1 / 1999$	18017	51299.5	33282.5

Table 2.6 Calculation of the Klinkard and Scalinger versions of modified Julian Day (MJD) from a given date.

2.8. Recommendations

UNILIB subroutines UT550 (select a coordinate transformation) and UT555 (coordinate conversion) implement the transformation from one coordinate system to another. Using these subroutines, the transformations GEO to MAG and GEO to GEI (a simple rotation about the z-axis) are accurately implemented. For transformations involving GEO to GSM, GSM to GSE and MAG to SM, the final y coordinate positions disagree by an average of 400 to 450 m with equivalent GEOPACK data. Additionally, the disagreement is greater at low latitudes than at high latitudes. The x and z positions were much more reliably found, typically disagreeing by tens of meters.

A possible recommendation is that the relative inaccuracy of the y coordinate positions involving these transformations is examined further. This could be done by finding a second method with which to compare UNILIB results and so determine which of either GEOPACK or UNILIB is the 'most' correct.

3. Evaluation of the geomagnetic field vector B

The Earth's internal magnetic field (geomagnetic field) results primarily from convective motion of the core and is approximately dipole configuration. The effective dipole is centered around 500 km from the center of the Earth toward the western Pacific and inclined at an angle of about 11.2° from the axis of rotation. The Earth's external field comes from currents flowing above the surface of the Earth and is much less stable than the internal field [5].

In the UNILIB library, the magnetic field model of the Earth is defined by selection of an internal field model using subroutine UM510 (select a geomagnetic field model) and an external field model using subroutine UM520 (select an external magnetic field model). These subroutines modify the contents of common block UC140 (magnetic field description) which is used by subroutine UM530 (evaluate the magnetic field vector) to evaluate the magnetic field at any geographic location. The most commonly used geomagnetic field model is the IGRF model, while for the external field it is Tsyganenko's model [6]. (In the UNILIB library (version 2.03), see Example 1 (page 79) for a sample program for evaluation of the magnetic field vector and frequently asked questions number T. 03 (page 38) on how to customize the magnetic field model.)

The IGRF model is the empirical representation of the Earth's magnetic field. The model employs a spherical harmonics expansion of the scalar potential V_{M} giving

$$
\begin{equation*}
V_{M}=\operatorname{Re} \sum_{n=0}^{\infty}\left(\frac{\operatorname{Re}}{r}\right)^{n+1} \sum_{m=0}^{n} P_{n}^{m}(\cos \theta)\left[g_{n}^{m} \cos (m \phi)+h_{n}^{m} \sin (m \phi)\right] \tag{3.1}
\end{equation*}
$$

where r is the distance from the center of the Earth, θ and ϕ are the geographic colatitude and east longitude respectively, Re is the Earth radius (6371.2 km), $P^{\mathrm{m}}{ }_{\mathrm{n}}(\cos \theta)$ are normalized associated Legendre functions and $g^{n}{ }_{m}$ and $h^{n}{ }_{m}$ gaussian coefficients. As both the center of the dipole and its inclination changes every year, the IGRF model consists of coefficient sets for the epochs 1945 to 1995 in steps of 5 years.

3.1. Centered dipole model

Within a few Earth radii the magnetic field of the Earth is similar to the field found if the Earth was modelled as a centered and aligned dipole (the dipole is aligned with the Earth's axis of rotation). The fields from this dipole may be represented by exact analytical formulas [7].

The strength of a dipole magnetic field is given by

$$
\begin{equation*}
B(r, \lambda)=\frac{M}{r^{3}} \sqrt{1+3 \sin ^{2} \lambda} \tag{3.2}
\end{equation*}
$$

where λ is the latitude, r the distance from the center of the Earth and M the Earth's dipole moment.

The field components, in spherical coordinates, are given as

$$
\begin{align*}
& B_{r}=-\frac{M}{r^{3}} 2 \sin \lambda \tag{3.3}\\
& B_{\theta}=-\frac{M}{r^{3}} \cos \lambda \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
B_{\phi}=0 \tag{3.5}
\end{equation*}
$$

The field B along a field line can be shown to be

$$
\begin{equation*}
B\left(r_{0}, \lambda\right)=M\left(\frac{\mathrm{Re}}{r_{0}}\right)^{3} \frac{\sqrt{1+3 \sin ^{2} \lambda}}{\cos ^{6} \lambda} \tag{3.6}
\end{equation*}
$$

where r_{0} is the radius at the equator.
Through subroutine UM510, UNILIB allows the centered dipole model (obtained from the IGRF model by truncation to the $2^{\text {nd }}$ order of the gaussian coefficients) to be selected. Table 3.1 shows modulus values of B computed using UNILIB subroutine UM530 and modulus values computed using equation (3.6) [labelled UNILIB and Exact respectively] at positions of radius 1 Re (on the Earth's surface) and 3 Re and for the year 1985 (the magnetic field is year dependent with $M=0.3043476883$ Gauss for 1985). The UNILIB field values, for both 1 Re and 3 Re , match the exact field values to the 14 digits shown. [Only data for latitudes 0° to 70° are shown as the fields are symmetrical about the equator.]

λ / \circ	1 Re	$B \\| / \mathrm{nT}$	3 Re	$B \\| / \mathrm{nT}$
	UNILIB	Exact	UNILIB	Exact
0	30434.7688343447	30434.7688343447	1127.2136605313	1127.2136605313
10	31781.5511649967	31781.5511649967	1177.0944875925	1177.0944875925
20	35374.2276695716	35374.2276695716	1310.1565803545	1310.1565803545
30	40261.4147727076	40261.4147727076	1491.1635101003	1491.1635101003
40	45545.7890066098	45545.7890066098	1686.8810743189	1686.8810743189
50	50566.3610888245	50566.3610888245	1872.8281884750	1872.8281884750
60	54867.0597945616	54867.0597945616	2032.1133257245	2032.1133257245
70	58138.1095907092	58138.1095907092	2153.2633181744	2153.2633181744

Table 3.1 Comparison of UNILIB and 'exact' modulus values of magnetic field, computed using the centered dipole model, at points located at different geographic latitudes, at a radius of 1 and 3 Re , and epoch 1985.

Table 3.2 shows B_{r} field values (for 1985) computed using subroutine UM530 and equation (3.3) [again labelled UNILIB and Exact respectively]. Again, the UNILIB field values, at both 1 Re and 3 Re , match the exact field values to the number of digits shown.

λ / \circ	$1 \mathrm{Re} B_{\mathrm{r}} / \mathrm{nT}$		$3 \mathrm{Re} B_{\mathrm{r}} / \mathrm{nT}$	
	UNILIB	Exact	UNILIB	Exact
0	0.000000000	0.000000000	0.0000000000	0.000000000
10	-10569.8842915960	-10569.8842915960	-391.477195985	-391.477195985
20	-20818.6079976120	-20818.6079976120	-771.059555467	-771.059555467
30	-30434.7688343450	-30434.7688343450	-1127.213660531	-1127.213660531
40	-39126.1846207820	-39126.1846207820	-1449.117948918	-1449.117948918
50	-46628.7710863210	-46628.7710863210	-1726.991521716	-1726.991521716
60	-52714.5659376990	-52714.5659376990	-1952.391331026	-1952.391331026
70	-57198.6553779170	-57198.6553779170	-2118.468717701	-2118.468717701

Table 3.2 Comparison of UNILIB and 'exact' B_{r} field values, computed using the centered dipole model, at points located at different geographic latitudes, at a radius of 1 and 3 Re, and epoch 1985.

Table 3.3 shows B_{θ} field values (for 1985) computed using subroutine UM530 and equation (3.4). Again, both sets of field values match to the number of digits shown.

λ / \circ	$1 \mathrm{Re} B_{\theta} / \mathrm{nT}$		$3 \mathrm{Re} B_{\theta} / \mathrm{nT}$	
	UNILIB	Exact	UNILIB	Exact
0	-30434.7688343450	-30434.7688343450	-1127.2136605313	-1127.2136605313
10	-29972.3963091970	-29972.3963091970	-1110.0887521925	-1110.0887521925
20	-28599.3276889590	-28599.3276889590	-1059.2343588503	-1059.2343588503
30	-26357.2829688490	-26357.2829688490	-976.1956655129	-976.1956655129
40	-23314.3855431600	-23314.3855431600	-863.4957608578	-863.4957608578
50	-19563.0923103910	-19563.0923103910	-724.5589744589	-724.5589744589
60	-15217.3844171720	-15217.3844171720	-563.6068302656	-563.6068302656
70	-10409.3039988060	-10409.3039988060	-385.5297777336	-385.5297777336

Table 3.3 Comparison of UNILIB and 'exact' B_{θ} field values, computed using the centered dipole model, at points located at different geographic latitudes, at a radius of 1 and 3 Re , and epoch 1985.

The magnetic field strength of a centered dipole is independent of longitude. This was checked within the UNILIB subroutine by calculating the magnetic field on the Earth's surface, at the equator, for epoch 1985, as a function of longitude. Table 3.4 shows that the field strengths computed by subroutine UM530 are, as expected, independent of longitude. Similar results were found for latitudes of 30° and -30°.

Longitude / ${ }^{\circ}$	$\|B\| / \mathrm{nT}$
360	30434.7688343447
280	30434.7688343447
200	30434.7688343447
120	30434.7688343447
80	30434.7688343447
0	30434.7688343447

Table 3.4 Variation of magnetic field with longitude, computed using UNILIB's implementation of the centered dipole model, at points located at 0° latitude, at a radius of 1 Re , and epoch 1985.

3.2. IGRF model

A more representative model of the Earth's internal field is the IGRF model [5]. Table 3.5 shows geomagnetic field values computed using UNILIB's implementation of the IGRF model compared with results computed using GEOPACK's implementation. The table shows modulus values and field component values in spherical coordinates, calculated at $3 \mathrm{Re}, 320^{\circ}$ longitude and epoch 1985. The UNILIB and GEOPACK field values either agree to all digits shown or differ by 'one’ point in the final digit. [By choosing the longitude as 320°, the comparisons were made in the unfavorable region of the South Atlantic Anomaly.]

$\lambda /{ }^{\circ}$	$B \mid / \mathrm{nT}$		$\mathrm{B}_{\mathrm{r}} / \mathrm{nT}$		B_{θ} / nT		B_{ϕ} / nT	
	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK
-80	2032.181	2032.183	1980.517	1980.518	-446.370	-446.370	-89.833	-89.833
-70	1884.150	1884.150	1787.311	1787.311	-588.421	-588.421	-96.445	-96.445
-60	1713.688	1713.688	1556.739	1556.74	-708.670	-708.670	-105.242	-105.242
-50	1532.643	1532.643	1296.742	1296.742	-808.769	-808.769	-115.528	-115.528
-40	1354.673	1354.673	1012.832	1012.832	-890.692	-890.692	-126.410	-126.410
-30	1197.399	1197.399	708.462	708.462	-955.560	-955.560	-136.937	-136.937
-20	1084.553	1084.554	386.158	386.158	-1002.879	-1002.880	-146.224	-146.225
-10	1042.918	1042.918	48.991	48.991	-1030.390	-1030.390	-153.547	-153.547
0	1088.328	1088.329	-298.130	-298.130	-1034.640	-1034.640	-158.401	-158.401
10	1212.177	1212.178	-647.758	-647.758	-1011.940	-1011.940	-160.535	-160.535
20	1387.833	1387.834	-989.976	-989.976	-959.402	-959.402	-159.936	-159.936
30	1586.242	1586.242	-1313.179	-1313.177	-875.872	-875.872	-156.774	-156.774
40	1783.488	1783.489	-1605.270	-1605.269	-762.262	-762.262	-151.332	-151.332
50	1961.535	1961.535	-1854.909	-1854.908	-621.464	-621.464	-143.941	-143.941
60	2107.222	2107.222	-2052.453	-2052.453	-457.828	-457.828	-134.970	-134.970
70	2211.302	2211.301	-2190.391	-2190.393	-276.489	-276.489	-124.852	-124.852
80	2267.677	2267.678	-2263.290	-2263.290	-82.818	-82.818	-114.128	-114.128

Table 3.5 Comparison of UNILIB and GEOPACK magnetic field values, computed using the IGRF model, at points located at different geographic latitudes, at a radius of 3 Re , along the meriodian 320° longitude, and epoch 1985.

A second comparison can be made by comparing magnetic field strengths computed using BILCAL's [3] implementation of the IGRF model. Table 3.6 shows field values computed using UNILIB and BILCAL, at positions of $1 \mathrm{Re}, 320^{\circ}$ longitude and for
epoch 1985. The UNILIB and BILCAL field values match to the number of digits shown. [As BILCAL's field components are in geodetic coordinates, while UNILIB's are in geocentric, results are shown as geodetic field components.]

λ / \circ	$\|B\| / n T$		$\mathrm{~B}_{\mathrm{r}} / \mathrm{nT}$		$\mathrm{B}_{\theta} / \mathrm{nT}$		$\mathrm{B}_{6} / \mathrm{nT}$	
	UNILIB	BILCAL	UNILIB	BILCAL	UNILIB	BILCAL	UNILIB	BILCAL
-80	49740.3	49740.3	-19209.2	-19209.2	3193.9	3193.9	45770.0	45770.1
-70	41657.2	41657.2	-20402.9	-20402.9	1682.2	1682.2	36279.7	36279.7
-60	33902.9	33902.9	-19396.9	-19396.9	-484.2	-484.2	27801.7	27801.7
-50	28116.0	28116.0	-17462.1	-17462.1	-2716.5	-2716.5	21867.9	21867.9
-40	25023.6	25023.6	-16420.4	-16420.4	-4656.9	-4656.9	18299.3	18299.3
-30	23979.5	23979.5	-17168.9	-17168.9	-6289.9	-6289.9	15514.0	15514.0
-20	24150.9	24150.9	-19507.5	-19507.5	-7764.3	-7764.3	11934.8	11934.8
-10	25355.7	25355.7	-22776.2	-22776.2	-9036.5	-9036.5	6519.2	6519.2
0	27790.7	27790.7	-25987.1	-25987.1	-9767.2	-9767.2	-1261.5	-1261.5
10	31562.1	31562.1	-27927.3	-27927.3	-9684.1	-9684.1	-11065.8	-11065.8
20	36406.1	36406.1	-27843.0	-27843.0	-8977.3	-8977.3	-21669.8	-21669.8
30	41758.8	41758.9	-25798.1	-25798.1	-8174.1	-8174.1	-31803.2	-31803.2
40	46939.8	46939.8	-22157.0	-22157.0	-7628.9	-7628.9	-40672.1	-40672.1
50	51128.3	51128.3	-17261.3	-17261.3	-7261.5	-7261.5	-47575.4	-47575.4
60	53628.9	53628.9	-11867.8	-11867.8	-6761.2	-6761.2	-51860.4	-51860.4
70	54597.7	54597.7	-7173.8	-7173.8	-5849.4	-5849.4	-53807.3	-53807.3
80	55221.5	55221.5	-3733.5	-3733.5	-4331.6	-4331.6	-54924.6	-54924.6

Table 3.6 Comparison of UNILIB and BILCAL magnetic field values, computed using the IGRF model, at points located at different geographic latitudes, at a radius of 1 Re , along the meriodian 320° longitude, and epoch 1985.

3.2.1. Computation time

The computer evaluation time of the UNILIB subroutines used to evaluate B field values is very rapid. For the IGRF model, using a Hewlett-Packard Workstation, it took 1.3 seconds to evaluate $100 B$ field values.

3.3. Tsyganenko's external magnetic field model

Table 3.7 shows field values, in cartesian coordinates, computed using UNILIB's implementation of the Tsyganenko (1989c) external field model [6] [subroutine UM520 (select an external magnetic field model)] compared with results computed using GEOPACK's implementation. As GEOPACK uses a cartesian Geocentric Solar Magnetospheric (GSM) coordinate system, while UNILIB calculates in spherical GEO, UNILIB results were transformed into cartesian GSM for comparison [subroutine UT556 (vector conversion) and UT542 (convert spherical vector components to cartesian components)]. Additionally, as UNILIB only allows evaluation of either the internal magnetic field or the total magnetic field (i.e. internal + external), the external field was computed by subtracting the internal field from the total field.

λ / \circ		B^{\prime} / nT		$B_{\mathrm{x}} / \mathrm{nT}$		$B_{\mathrm{v}} / \mathrm{nT}$		$B_{\mathrm{z}} / \mathrm{nT}$	
	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK	UNILIB	GEOPACK	
0	43.82007	43.82012	1.33399	1.33576	-8.20702	-8.20681	-43.024	-43.02403	
5	43.92521	43.92484	0.87812	0.87971	-8.22648	-8.22629	-43.13895	-43.13867	
10	43.96019	43.96037	0.43223	0.43345	-8.22381	-8.22365	-43.1819	-43.18214	
15	43.92680	43.92762	0.00774	0.00948	-8.19969	-8.19955	-43.15483	-43.15556	
20	43.82881	43.82873	-0.38307	-0.38113	-8.15553	-8.15542	-43.06155	-43.0616	
25	43.66750	43.66715	-0.73127	-0.72923	-8.09336	-8.09325	-42.90477	-42.90435	
30	43.44738	43.44722	-1.03047	-1.0279	-8.01564	-8.01556	-42.68907	-42.68904	
35	43.17429	43.17440	-1.27369	-1.27301	-7.92516	-7.92509	-42.42159	-42.4217	
40	42.85468	42.85466	-1.46425	-1.46231	-7.82481	-7.82475	-42.10877	-42.10886	
45	42.49443	42.49445	-1.59760	-1.59615	-7.71746	-7.71741	-41.75731	-41.75731	
50	42.10103	42.10044	-1.67770	-1.67638	-7.60586	-7.60581	-41.37428	-41.37376	
55	41.67903	41.67929	-1.70823	-1.70641	-7.49254	-7.49249	-40.96454	-40.96479	
60	41.23735	41.23752	-1.69267	-1.69065	-7.37976	-7.37972	-40.53645	-40.53658	
65	40.78083	40.7813	-1.63527	-1.63423	-7.26950	-7.26946	-40.09443	-40.09487	
70	40.3165	40.31641	-1.54427	-1.54271	-7.16344	-7.16340	-39.64501	-39.64491	
75	39.84765	39.84812	-1.42322	-1.42191	-7.06297	-7.06293	-39.19086	-39.1914	
80	39.38149	39.38113	-1.27955	-1.27769	-6.96919	-6.96915	-38.73866	-38.73851	

Table 3.7 Comparison of UNILIB and GEOPACK external magnetic field values, computed using the Tsyganenko (1989c) model, at points located at different geographic latitudes, at a radius of 1 Re , and along the meriodian 0° longitude.

Table 3.7 shows modulus values and field component values, calculated at $1 \mathrm{Re}, 0^{\circ}$ longitude, and using UNILIB's default parameter values of Kp, Dst, solar wind velocity, etc. Typically, the modulus values agree to the first 4 or 5 digits, values of B_{x} to 3 digits and values of B_{y} and B_{z} to 4 or 5 digits. The good agreement of the results provides not only verification of UNILIB's implementation of the Tsyganenko (1989c) external field model and the calculation of the geomagnetic field but also the implementation of the vector component conversion subroutine UT556 (vector conversion).

3.3.1 \quad Computation time

The computer evaluation time for the evaluation of B field values using Tsyganenko's external field model were similar to those for the IGRF model. Again, using a HewlettPackard Workstation, 100 B field values were evaluated in 1.3 seconds.

3.4. Recommendations

UNILIB's implementation of the centered dipole model, the IGRF model, Tsyganenko's (1989c) model, and the resulting calculation of the geomagnetic field, has been validated.

4. Evaluation of the adiabatic invariant I

The second adiabatic invariant I describes the motion of a particle bouncing between two mirror points. The quantity I is defined by

$$
\begin{equation*}
I=\int_{a 1}^{a 1^{*}} \sqrt{1-\frac{B}{B_{m}}} d l \tag{4.1}
\end{equation*}
$$

where al^{*} and al are the geographic positions of the two mirror points, B_{m} is the magnetic field intensity at the mirror points, B is the magnetic field intensity at an arbitrary point along the particles path and $d l$ is an infinitesimal arc length [8].

4.1. Introduction

The integral invariant I is evaluated using UNILIB subroutine UL230 (evaluate the integral invariant coordinate I). The subroutine uses a Runge-Kutta integration technique to evaluate (4.1) for a temporary magnetic field line stored in common block UC170 (temporary magnetic field line). The field line is evaluated in segments using subroutine UF420 (trace a magnetic field line segment passing through a given position). This requires subroutine UF421 (initialize and close a line segment), UF422 (follow a field line until a boundary condition is reached) and UF423 to trace the magnetic field line (Runge Kutta step [solves the required ordinary differential equations (see below) using the Gill Runge-Kutta method (a fourth-order Runge-Kutta method)]). The Runge Kutta step size is proportional to the radius of curvature of the magnetic field line [subroutine UF425 (evaluate the curvature of the field lines)]. The temporary common block UC170 contains information on the length of the magnetic field line, the magnetic field vector and the local radius of curvature for each of the segments.

The problem of field line tracing is solved by the resolution of three coupled ordinary differential equations [9].

The element of length along a field line is given in spherical coordinates by

$$
\begin{equation*}
\Delta l=\sqrt{\Delta \rho^{2}+\rho^{2} \Delta \phi^{2}+\rho^{2} \sin ^{2} \theta \Delta \phi^{2}} \tag{4.2}
\end{equation*}
$$

where Δl is the modulus of the vector $\Delta I(\Delta \rho, \rho \Delta \theta, \rho \sin \theta \Delta \phi)$.
The modulus of the magnetic field vector B is given by

$$
\begin{equation*}
\sqrt{B_{\rho}^{2}+B_{\theta}^{2}+B_{\phi}^{2}} \tag{4.3}
\end{equation*}
$$

The unit vectors of both quantities follow as

$$
\begin{equation*}
\frac{\Delta \rho}{\Delta l}, \frac{\rho \Delta \theta}{\Delta l}, \frac{\rho \sin \theta \Delta \varphi}{\Delta l} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{B_{\rho}}{B}, \frac{B_{\theta}}{B}, \frac{B_{\phi}}{B} \tag{4.5}
\end{equation*}
$$

Since the vector $\Delta \boldsymbol{I}$ is always tangential to the field line, the two unit vectors must be equal everywhere along the field line. This produces a set of three ordinary differential equations which, in spherical coordinates, are

$$
\begin{align*}
& \Delta \rho=\frac{B_{\rho}}{B} \Delta l \tag{4.6}\\
& \Delta \theta=\frac{B_{\theta}}{B} \frac{\Delta l}{\rho} \tag{4.7}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta \phi=\frac{B_{\phi}}{B} \frac{\Delta l}{\rho \sin \theta} \tag{4.8}
\end{equation*}
$$

Given B, B_{ρ}, B_{θ} and B_{ϕ}, the differential equations can be solved by a Runge-Kutta method (subroutine UF423) to find the increments $\Delta \rho, \Delta \theta$ and $\Delta \phi$, allowing the field line to be traced.

4.2. Calculation of I for a centered dipole model

For the centered dipole model, the integral invariant I at magnetic latitude λ on a line of force having an equatorial radial distance r_{0} is given by [8]

$$
\begin{equation*}
I=2 r_{0} \int_{0}^{Y}\left[1-\left(\frac{1+3 Y_{a}^{2}}{1+3 Y^{2}}\right)^{1 / 2}\left(\frac{1-Y^{2}}{1-Y_{a}^{2}}\right)^{3}\right]^{1 / 2}\left(1+3 Y_{a}^{2}\right)^{1 / 2} d Y_{a} \tag{4.9}
\end{equation*}
$$

where $Y=\sin \lambda$.
I values computed using this integral will be referred to as 'exact' (the listing of the Fortran program is given in Appendix A1).

Table 4.1 shows I computed by UNILIB and 'exact' values computed using (4.9) for 1 Re and 3 Re. The columns labeled 'Error' show the relative error defined as(| UNILIB estimate - Exact |/ Exact). The two sets of results are in good agreement with a relative error of between 10^{-5} at low latitudes to 10^{-6} at high latitudes. Note that since the value of I increases with latitude, the relative error remains small.

	$1 \mathrm{Re} I / \mathrm{km}$			$3 \mathrm{Re} I / \mathrm{km}$		
λ / \circ	UNILIB $/ \mathrm{km}$	Exact $/ \mathrm{km}$	Error	UNILIB $/ \mathrm{km}$	Exact $/ \mathrm{km}$	Error
-70	133811.361	133811.625	$1.98 \mathrm{E}-06$	161258.896	401434.875	$5.98 \mathrm{E}-01$
-60	53753.269	53753.578	$5.75 \mathrm{E}-06$	161258.896	161260.734	$1.14 \mathrm{E}-05$
-50	25877.046	25877.268	$8.58 \mathrm{E}-06$	77630.588	77631.805	$1.57 \mathrm{E}-05$
-40	13145.706	13146.062	$2.71 \mathrm{E}-05$	39436.781	39438.188	$3.57 \mathrm{E}-05$
-30	6436.064	6436.187	$1.91 \mathrm{E}-05$	19308.025	19308.561	$2.78 \mathrm{E}-05$
-20	2664.257	2664.337	$3.00 \mathrm{E}-05$	7992.653	7993.011	$4.49 \mathrm{E}-05$
-10	649.371	649.420	$7.55 \mathrm{E}-05$	1948.114	1948.261	$7.55 \mathrm{E}-05$
0	0.000	0.000	0.0	0.000	0.000	0.0
10	649.372	649.420	$7.39 \mathrm{E}-05$	1948.115	1948.261	$7.50 \mathrm{E}-05$
20	2664.258	2664.337	$2.97 \mathrm{E}-05$	7992.653	7993.011	$4.48 \mathrm{E}-05$
30	6436.064	6436.187	$1.91 \mathrm{E}-05$	19308.025	19308.561	$2.77 \mathrm{E}-05$
40	13145.707	13146.062	$2.70 \mathrm{E}-05$	39436.782	39438.188	$3.56 \mathrm{E}-05$
50	25877.046	25877.268	$8.58 \mathrm{E}-06$	77630.589	77631.805	$1.57 \mathrm{E}-05$
60	53753.269	53753.578	$5.75 \mathrm{E}-06$	161258.897	161260.734	$1.14 \mathrm{E}-05$
70	133811.361	133811.625	$1.97 \mathrm{E}-06$	161258.896	401434.875	$5.98 \mathrm{E}-01$

Table 4.1 Comparison of UNILIB and 'exact' I values, computed using the centered dipole model, at points located at different geographic latitudes, and at a radius of 1 and 3 Re.

The UNILIB estimate at $\pm 70^{\circ}$ and 3 Re is unreliable (equal to the estimate at $\pm 60^{\circ}$). For high latitudes the magnetic field lines penetrate out of the magnetosphere and into the magnetotail. By default UNILIB prevents the field line from being traced out of the magnetosphere, stopping the calculation of I within a fixed radial distance,. This explains the 'saturation' for the UNILIB estimate at $\lambda= \pm 70^{\circ}$ as the field line in this case is incompletely traced.

Parameters kum533 in common block UC190 (control parameters, set 1) and xbmin in common block UC192 (control parameters, set 2) control whether the field lines are traced outside of the magnetosphere. Parameter kum533 is set by default to ' 1 ' and prevents the magnetic field being traced outside the magnetosphere [subroutine UM533 (distance to magnetosphere)]. Parameter xbmin, the lowest allowed value of the magnetic field intensity, is set by default to 4.0E-05 Gauss. When kum533 is set to less than zero allowing field lines to be traced outside the magnetosphere and xbmin set to a lower intensity, say 1.0E-07 Gauss, the UNILIB estimate at $\pm 70^{\circ}$ and 3 Re was accurate (relative error approximately 10^{-5}).

4.3. Calculation of \boldsymbol{I} for the IGRF model

As (4.9) is valid only for a centered dipole model, an alternative and independent method of computing I (i.e. an alternative method of tracing the magnetic field line) which can be applied to the IGRF model had to be developed first. The 'best' alternative method was found through examination of the centered dipole model.

4.3.1. Comparison of integration methods

Four 'Runge-Kutta’ methods were examined to solve the differential equations (4.6) to (4.8); Euler, Runge-Kutta (as used by UNILIB), Gill and Runge-Kutta adaptive [9]. The first three methods require a constant step size during integration. The fourth method, Runge-Kutta adaptive, exerts adaptive control over the step size. Each of the methods was applied in a Fortran program to evaluate I for the centered dipole model. As the field line is traced the value of the integrand $\sqrt{ }\left(1-B / B_{\mathrm{m}}\right)$ and the length of the line segment is stored in a vector. Using this information, integral (4.1) is evaluated using the CERN integration routine DGAUSS [10].

Table 4.2 shows values of I, computed using the four Runge-Kutta methods, at a radius of 3 Re for the centered dipole model. The final column of the table shows, for comparison, 'exact' values of I computed using (4.9). The step size used by the Euler method is 0.7 km , for Runge-Kutta 0.7 km , for Gill 15 km and for Runge-Kutta adaptive, an initial step size of 0.4 km .

The maximum difference between I computed using the Euler method to trace the field line and exact values is 1.26 km (average difference 0.69 km). The two sets of data agree better at low rather than high latitudes. Additionally, Euler values are symmetric, as are the exact values, about 0°.

The maximum difference between I computed using the Runge-Kutta method and exact values is 7.99 km (average difference1.69 km). Again the two sets of data agree better at low rather than high latitudes. Additionally, Runge-Kutta values agree better at northern hemisphere latitudes than southern hemisphere latitudes. Neglecting the RungeKutta values for $\pm 70^{\circ}$, which are significantly different from the exact values, the average difference between the two sets of data is 0.91 km .

The maximum difference between I computed using the Gill method and exact values is 0.8 km (average difference 0.50 km). The two sets of data agree better at low latitudes and in the Northern hemisphere.

The maximum difference between I computed using the Runge-Kutta adaptive method and exact values is 2.38 km (average difference 0.47 km). Again, the two sets of data agree better at low latitudes and in the Northern hemisphere.

λ / \circ	Euler / km	Runge-Kutta / km	Gill / km	Runge-Kutta adaptive / km	Exact / km
-70	401433.613	401440.330	401434.058	401436.333	401434.875
-60	161261.296	161263.764	161260.160	161261.573	161260.734
-50	77632.741	77633.768	77631.206	77632.337	77631.805
-40	39439.087	39439.518	39437.578	39438.538	39438.188
-30	19309.320	19309.472	19307.963	19308.810	19308.561
-20	7993.529	7993.563	7992.458	7993.159	7993.011
-10	1948.500	1948.499	1947.813	1948.308	1948.261
0	0.000	0.000	0.000	0.000	0.000
10	1948.500	1948.499	1947.995	1948.308	1948.261
20	7993.529	7993.492	7992.646	7993.138	7993.011
30	19309.320	19309.165	19308.130	19308.722	19308.561
40	39439.090	39438.657	39437.676	39438.291	39438.188
50	77632.743	77631.687	77631.316	77631.742	77631.805
60	161261.310	161258.822	161260.195	161260.161	161260.734
70	401433.617	401426.888	401434.145	401432.492	401434.875

Table 4.2 Comparison of different integration methods applied to evaluate I, compared with 'exact' values, computed using the centered dipole model, at points located at different geographic latitudes, and at a radius of 3 Re.

Its is concluded that Gill and Runge-Kutta adaptive are the most suitable for evaluating I. Section 4.3.2 will apply the Runge-Kutta adaptive program to evaluate I for the IGRF model and compare with the equivalent UNILIB data.

4.3.2. Results

Table 4.3 shows I computed using UNILIB and the Runge-Kutta adaptive (RK adaptive) program (the listing of the Fortran program is given in Appendix A2) for the 1985 IGRF model at 1 and 3 Re and 0° longitude. The columns labeled 'Error' show the relative error defined as (| UNILIB estimate - RK adaptive estimate |/ RK adaptive estimate). The two sets of data have a relative error of between 10^{-3} at low latitudes to 10^{-4} at high latitudes (two orders of magnitude greater than the relative errors shown for the centered dipole model). Additionally, as discussed in section 4.2, saturation is seen for the UNILIB estimate of I at $+70^{\circ}$ latitude and radius 3 Re .

λ / \circ	I Re I / km			3 Re I / km		
	UNILIB	RK adaptive	Error	UNILIB	RK adaptve	Error
-70	54790.651	54796.757	$1.11 \mathrm{E}-04$	213668.369	213696.916	$1.34 \mathrm{E}-04$
-60	33714.655	33719.567	$1.46 \mathrm{E}-04$	108432.565	108448.406	$1.46 \mathrm{E}-04$
-50	21912.759	21918.216	$2.49 \mathrm{E}-04$	58494.753	58520.259	$4.36 \mathrm{E}-04$
-40	14365.312	14371.110	$4.03 \mathrm{E}-04$	31606.675	31628.864	$7.02 \mathrm{E}-04$
-30	9078.048	9081.953	$4.30 \mathrm{E}-04$	15925.285	15940.199	$9.36 \mathrm{E}-04$
-20	5145.352	5148.855	$6.80 \mathrm{E}-04$	6540.867	6557.312	$2.51 \mathrm{E}-03$
-10	2284.202	2288.798	$2.01 \mathrm{E}-03$	1443.546	1452.069	$5.87 \mathrm{E}-03$
0	527.825	529.856	$3.83 \mathrm{E}-03$	19.989	20.614	$3.03 \mathrm{E}-02$
10	7.833	8.081	$3.07 \mathrm{E}-03$	2264.042	2278.234	$6.23 \mathrm{E}-03$
20	892.508	894.830	$2.60 \mathrm{E}-03$	8565.012	8578.372	$1.56 \mathrm{E}-03$
30	3589.598	3593.310	$1.03 \mathrm{E}-03$	20260.057	20277.488	$8.60 \mathrm{E}-04$
40	9477.023	9481.242	$4.45 \mathrm{E}-04$	41137.869	41155.962	$4.40 \mathrm{E}-04$
50	22032.144	22035.695	$1.61 \mathrm{E}-04$	80792.669	80813.728	$2.61 \mathrm{E}-04$
60	46725.819	46727.156	$2.86 \mathrm{E}-05$	166461.719	166477.427	$9.44 \mathrm{E}-05$
70	114326.464	114323.117	$2.93 \mathrm{E}-05$	166461.719	394085.161	1.37

Table 4.3 Comparison of I values computed using UNILIB and the Runge-Kutta adaptive method, computed using the IGRF model, at points located at different geographic latitudes, at a radius of 1 and 3 Re , along the meriodian 0° longitude, and epoch 1985.

4.4. Improving the accuracy of I

The accuracy of UNILIB's estimate of I for the IGRF model is relatively good. However, by increasing the number of steps to trace the field line stored in common block UC170 (temporary magnetic field line), the accuracy of the computed I value can be improved (though at the expense of a longer computation time).

4.4.1. \quad Modifying the parameters prop and stepx

Fig 4.1 shows the difference between UNILIB and exact [equation (4.9)] values of I for the centered dipole model for points located at different geographic latitudes and a radius of 1 Re . The difference is often as much as a few kilometers and its fluctuating nature due to UNILIB's method of determining the step size as proportional to the radius of curvature rather than fixed [as in the Euler or Runge-Kutta methods (see Table 4.2)].

Figure 4.1 Difference between UNILIB and exact values of I, computed using the centered dipole model at a radius of 1 Re. Results are computed using the default values of $p r o p=0.2$ and step $x=0.075$.

The step size within UNILIB is defined as the radius of curvature multiplied by a constant prop [prop is a parameter of common block UC190 (control parameters, set 1) which is set, by default, to 0.2]. By decreasing the value of prop, and therefore increasing the number of steps used to trace a field line, UNILIB's estimate of I increases in accuracy. This is illustrated by Fig. 4.2. Fig. 4.2 is similar to Fig. 4.1, but with the
value of prop used to calculate I reduced from 0.2 to 0.02 , increasing the number of steps by a factor of 10 [the parameter stepx (maximum step size) was also reduced from 0.075 to 0.02]. The difference between UNILIB and exact values is now less than 0.09 km .

Figure 4.2 Difference between UNILIB and exact values of I, computed using the centered dipole model at a radius of 1 Re . Results are computed using the modified values of $p r o p=0.02$ and stepx $=0.02$.

4.4.2. \quad Centered dipole model

Table 4.4 is similar to Table 4.1 but with UNILIB using modified values of prop= 0.02 , stepx $=0.02$, kum533 < 0 and xbmin= 1.0E-07 Gauss (section 4.2). The relative error varies from approximately 10^{-5} to 10^{-6}, which despite the increased number of steps, is only slightly smaller than the errors shown in Table 4.1. Note that as modified values of parameters kum533 and xbmin have been used, at high latitudes the field lines will have been traced outside of the magnetosphere allowing an accurate estimation of I.

$\lambda /{ }^{\circ}$	IRe I / km			$3 \mathrm{Re} I / \mathrm{km}$		
	UNILIB	Exact	Error	UNILIB	Exact	Error
-80	566740.974	566741.375	$7.08 \mathrm{E}-07$	1700222.41	1700224.12	$1.01 \mathrm{E}-06$
-70	133811.361	133811.625	$1.98 \mathrm{E}-06$	401433.570	401434.875	$3.25 \mathrm{E}-06$
-60	53753.269	53753.578	$5.75 \mathrm{E}-06$	161258.896	161260.734	$1.14 \mathrm{E}-05$
-50	25877.046	25877.268	$8.57 \mathrm{E}-06$	77630.588	77631.805	$1.57 \mathrm{E}-05$
-40	13145.706	13146.062	$2.70 \mathrm{E}-05$	39436.781	39438.188	$3.57 \mathrm{E}-05$
-30	6436.064	6436.187	$1.90 \mathrm{E}-05$	19308.025	19308.561	$2.78 \mathrm{E}-05$
-20	2664.257	2664.337	$3.01 \mathrm{E}-05$	7992.653	7993.011	$4.49 \mathrm{E}-05$
-10	649.371	649.420	$7.59 \mathrm{E}-05$	1948.114	1948.261	$7.54 \mathrm{E}-05$
0	0.000	0.000	0.0	0.000	0.000	0.0
10	649.372	649.420	$7.50 \mathrm{E}-05$	1948.115	1948.261	$7.50 \mathrm{E}-05$
20	2664.258	2664.337	$2.98 \mathrm{E}-05$	7992.653	7993.011	$4.48 \mathrm{E}-05$
30	6436.064	6436.187	$1.91 \mathrm{E}-05$	19308.025	19308.561	$2.77 \mathrm{E}-05$
40	13145.707	13146.062	$2.70 \mathrm{E}-05$	39436.782	39438.188	$3.56 \mathrm{E}-05$
50	25877.046	25877.268	$8.56 \mathrm{E}-06$	77630.589	77631.805	$1.57 \mathrm{E}-05$
60	53753.269	53753.578	$5.75 \mathrm{E}-06$	161258.897	161260.734	$1.14 \mathrm{E}-05$
70	133811.361	133811.625	$1.97 \mathrm{E}-06$	401433.570	401434.875	$3.25 \mathrm{E}-06$
80	566740.974	566741.375	$7.08 \mathrm{E}-07$	1700222.41	1700224.13	$1.01 \mathrm{E}-06$

Table 4.4 Comparison of UNILIB and 'exact' I values, computed using the centered dipole model, at points located at different geographic latitudes, and at a radius of 1 and 3 Re. Results are computed using the modified values of $p r o p=0.02$, stepx $=0.02$, kum533 <0 and $x b m i n=1.0 \mathrm{E}-07$ Gauss.

4.4.3. IGRF model

Table 4.5 is similar to 4.3 but with UNILIB using modified values of prop= 0.02 , stepx $=0.02$, kum533 <0 and $x b m i n=1.0 \mathrm{E}-07$ Gauss. The relative error varies from 10^{-4} at low latitudes to 10^{-5} at high latitudes, an order of magnitude improvement in accuracy when compared to Table 4.3. Additionally, through modifying kum533 and xbmin, the UNILIB results are accurate at high latitudes.

λ / \circ	I Re I / km			$3 \mathrm{Re} I / \mathrm{km}$		
	RK adaptive	UNILIB	Error	RK adaptive	UNILIB	Error
-70	54795.2307	54794.0397	$2.17 \mathrm{E}-05$	213695.025	213692.348	$1.25 \mathrm{E}-05$
-60	33718.5107	33717.4827	$3.05 \mathrm{E}-05$	108447.134	108445.103	$1.87 \mathrm{E}-05$
-50	21917.3309	21916.6451	$3.12 \mathrm{E}-05$	58519.3604	58517.3229	$3.48 \mathrm{E}-05$
-40	14370.5676	14369.9636	$4.20 \mathrm{E}-05$	31628.2307	31626.1318	$6.64 \mathrm{E}-05$
-30	9081.5462	9080.9267	$6.82 \mathrm{E}-05$	15939.7539	15938.8674	$5.56 \mathrm{E}-05$
-20	5148.4566	5147.9001	$1.08 \mathrm{E}-04$	6557.0436	6556.6149	$6.54 \mathrm{E}-05$
-10	2288.5050	2288.0678	$1.91 \mathrm{E}-04$	1451.9436	1451.6513	$2.01 \mathrm{E}-04$
0	529.6991	529.4740	$4.25 \mathrm{E}-04$	20.5991	20.5570	$2.05 \mathrm{E}-03$
10	8.0556	7.9924	$7.91 \mathrm{E}-03$	2278.0695	2277.8290	$1.06 \mathrm{E}-04$
20	894.5811	894.2751	$3.42 \mathrm{E}-04$	8578.0830	8577.6109	$5.50 \mathrm{E}-05$
30	3592.8427	3592.2502	$1.65 \mathrm{E}-04$	20277.1384	20276.2960	$4.16 \mathrm{E}-05$
40	9480.6568	9479.9338	$7.63 \mathrm{E}-05$	41155.7174	41154.3765	$3.26 \mathrm{E}-05$
50	22035.4420	22035.0512	$1.77 \mathrm{E}-05$	80813.9211	80813.0058	$1.13 \mathrm{E}-05$
60	46727.9569	46728.3333	$8.06 \mathrm{E}-06$	166478.849	166478.364	$2.91 \mathrm{E}-06$
70	114327.425	114330.417	$2.62 \mathrm{E}-05$	394090.308	394093.114	$7.12 \mathrm{E}-06$

Table 4.5 Comparison of I values computed using UNILIB and the Runge-Kutta adaptive method, computed using the IGRF model, at points located at different geographic latitudes, at a radius of 1 and 3 Re , along the meriodian 0° longitude, and epoch 1985. Results are computed using the modified values of prop $=0.02$, stepx $=0.02$, kum533 <0 and $x b m i n=1.0 \mathrm{E}-07$ Gauss.

4.5. Computation time

Figure 4.3 shows the difference in computation times between using values of prop of 0.2 and 0.02 . For example, the time taken to compute 200 values of I increases from approximately 1.5 seconds to around 4 seconds if the value of prop is decreased, i.e. increasing the precision of the calculations increases the computation time. Tests were performed on a DEC Alpha/OSF system.

4.6. Recommendations

For the IGRF model, using the default value of prop (0.2), UNILIB computes I to an accuracy of 10^{-3} to 10^{-4}. If the number of steps used to trace the field line is increased then the accuracy of I increases, though at the expense of a greater computation time. Results were shown for the IGRF model, while taking prop $=0.02$, with relative errors of 10^{-4} to 10^{-5}.

Figure 4.3 Comparison of computer evaluation times when using the default and modified values of prop in the calculation of I.

The user can increase the number of steps by reducing the values of prop and stepx in common block UC190. The modified values of prop and stepx must be stated in the Fortran program after the subroutine UT990 (initialize the UNILIB library) has been called. This, however, is a rather laborious procedure with no means of knowing the exact accuracy of I as the parameters are changed. It is recommended that a parameter is introduced in subroutine UL230 allowing the user to choose the desired accuracy of I (or, at the very least, the subroutines are adapted to allow the parameters prop and stepx to be easily modified).

Additionally, it is recommended that the Runge-Kutta adaptive technique used within subroutine UF423 (Runge Kutta step) to trace the magnetic field line.

A further recommendation is further investigation of the simple Euler method to solve the required differential equations.

Finally, it is recommended that alternative default values for parameters kum535 and xbmin be investigated to allow reliable computation of I at high latitudes.

5. Evaluation of McIlwain's magnetic shell parameter L

A convenient system of coordinates is McIlwain's shell parameter L and magnetic field strength B. Through UNILIB subroutine UL220 (get information on a magnetic field line segment), the subroutine UL240 (evaluate the Hilton function) computes the shell parameter L [8] from the integral invariant I and the magnetic field intensity B_{m} at the mirror points.

5.1. Centered dipole model

L values computed using UNILIB were compared with results obtained by three alternative methods;

1. For a centered dipole model the magnetic shell parameter L is defined as [8]

$$
\begin{equation*}
\frac{L^{3} B}{M}=F\left(\frac{I^{3} B}{M}\right) \tag{5.1}
\end{equation*}
$$

where M is the dipole moment of the Earth and F is the function given by

$$
\begin{equation*}
\frac{r_{0}^{3} B}{M}=F\left(\frac{I^{3} B}{M}\right) \tag{5.2}
\end{equation*}
$$

where r_{0} is the equatorial radius.
This allows a set of values of the function F to be calculated, e.g. a table of $I^{3} B / M$ values with the corresponding $L^{3} B / M$ values. For any particular combination of I and B, the corresponding value of L can be obtained. A table containing 1000 values of $I^{3} B / M$ and $L^{3} B / M$ as a function of latitude between 0 and 90° was calculated. A sample set of the table is shown as Table 5.1. Values of $I^{3} B / M$ that are not tabulated, and the corresponding $L^{3} B / M$ and L values, are found through interpolation (using CERN's DIVDIF subroutine [10]). Data obtained by this method will be labelled 'Method 1'.

$\lambda /{ }^{\circ}$	$\mathrm{I}^{3} \mathrm{~B} / \mathrm{M}$	$\mathrm{L}^{3} \mathrm{~B} / \mathrm{M}$
0.0	0.0	1.0
1.029601030	0.000000001	1.001454000
2.230802231	0.000000129	1.006840000
3.603603604	0.000002307	1.017925000
4.976404976	0.000016102	1.034400000
5.062205062	0.000017849	1.035613000
15.958815959	0.020028921	1.402162000
20.935220935	0.114635800	1.771635000

Table 5.1 Table of $I^{3} B / M$ values with the corresponding $L^{3} B / M$ values.
2. The integral invariant I is evaluated using the 'Gill' Runge-Kutta method (section 4.3.1) to trace the magnetic field line. Using this result, L is evaluated by applying the Hilton function (implemented through subroutine UL240). Data obtained by this method will be labelled as 'Method 2'.
3. By definition, for a centered dipole field, L is the radial distance of the intersection of the field line with the equator. It can be shown that [7]

$$
\begin{equation*}
r=L \cos ^{2} \lambda \tag{5.3}
\end{equation*}
$$

where r is the radial distance from the Earth's center at latitude λ.

Data obtained by this method will be labelled as 'Method 3’.
Table 5.2 shows L computed at 1 Re using UNILIB, against values computed by the three alternative methods detailed. Only values for -70 to 0° are shown as results are symmetric about the equator. Columns labelled 'Error 1', 'Error 2' and 'Error 3' show the relative error (| UNILIB estimate - Method estimate |/ Method estimate) when comparing UNILIB results with those of methods 1,2 and 3 . L values computed using UNILIB agree with the first 3 to 4 digits of the comparison values with a relative error of approximately 10^{-4} at low latitudes to 10^{-5} at high latitudes.

λ / \circ	L / Re				Relative error		
	UNILIB	Method 1	Method 2	Method 3	Error 1	Error 2	Error 3
-70	8.5491	8.5486	8.5493	8.5486	$5.85 \mathrm{E}-05$	$2.34 \mathrm{E}-05$	$5.85 \mathrm{E}-05$
-60	4.0002	4.0000	4.0004	4.0000	$5.00 \mathrm{E}-05$	$5.00 \mathrm{E}-05$	$5.00 \mathrm{E}-05$
-50	2.4202	2.4203	2.4204	2.4203	$4.13 \mathrm{E}-05$	$8.26 \mathrm{E}-05$	$4.13 \mathrm{E}-05$
-40	1.7038	1.7041	1.7040	1.7041	$1.76 \mathrm{E}-04$	$1.17 \mathrm{E}-04$	$1.76 \mathrm{E}-04$
-30	1.3330	1.3333	1.3332	1.3333	$2.25 \mathrm{E}-04$	$1.50 \mathrm{E}-04$	$2.25 \mathrm{E}-04$
-20	1.1322	1.1325	1.1324	1.1325	$2.65 \mathrm{E}-04$	$1.77 \mathrm{E}-04$	$2.65 \mathrm{E}-04$
-10	1.0309	1.0311	1.0311	1.0311	$1.94 \mathrm{E}-04$	$1.94 \mathrm{E}-04$	$1.94 \mathrm{E}-04$
0	1.0000	1.0000	1.0000	1.0000	0.0	0.0	0.0

Table 5.2 Comparison of values of L computed using UNILIB and three alternative methods, computed using the centered dipole model, at points located at different geographic latitudes, and at a radius of 1 Re .

Table 5.3 shows L computed at 3 Re. Again, the relative error varies from 10^{-4} to 10^{-5}.

λ / \circ	$L /$ Re				Relative error		
	UNILIB	Method 1	Method 2	Method 3	Error 1	Error 2	Error 3
-70	25.6472	25.6459	25.6479	25.6459	$5.07 \mathrm{E}-05$	$2.73 \mathrm{E}-05$	$5.07 \mathrm{E}-05$
-60	12.0004	12.0000	12.0012	12.0000	$5.33 \mathrm{E}-05$	$6.67 \mathrm{E}-05$	$3.33 \mathrm{E}-05$
-50	7.2604	7.2608	7.2612	7.2608	$5.51 \mathrm{E}-04$	$1.10 \mathrm{E}-04$	$5.51 \mathrm{E}-05$
-40	5.1113	5.1123	5.112	5.1123	$1.96 \mathrm{E}-04$	$1.37 \mathrm{E}-04$	$1.96 \mathrm{E}-04$
-30	3.9988	4.0000	3.9996	4.0000	$3.00 \mathrm{E}-04$	$2.00 \mathrm{E}-04$	$3.00 \mathrm{E}-04$
-20	3.3964	3.3974	3.3972	3.3974	$2.94 \mathrm{E}-04$	$2.35 \mathrm{E}-04$	$2.94 \mathrm{E}-04$
-10	3.0925	3.0933	3.0932	3.0933	$2.59 \mathrm{E}-04$	$2.26 \mathrm{E}-04$	$2.59 \mathrm{E}-04$
0	3.0000	3.0000	3.0000	3.0000	0.0	0.0	0.0

Table 5.3 Comparison of values of L computed using UNILIB and three alternative methods, computed using the centered dipole model, at points located at different geographic latitudes, and at a radius of 3 Re .

5.2. IGRF model

For the IGRF model, L values computed by UNILIB were checked with values computed using method 2 (methods 1 and 3 not being applicable). The integral invariant I is evaluated using the Runge-Kutta adaptive method (section 4.3.1) to trace the
magnetic field line (as detailed earlier, L is calculated by applying the Hilton function). Table 5.4 shows L computed using UNILIB and the RK adaptive program for the IGRF 1985 model at 1 and 3 Re and 0° longitude. The UNILIB and RK adaptive results agree to the first 3 or 4 digits. The relative error is typically 10^{-4} though occasionally 10^{-5} at high latitudes. (UNILIB data for 70° and 3 Re was unavailable as the field line was traced outside the magnetosphere and an error was returned.)

$\lambda /{ }^{\circ}$	1 Re $L / R e$			3 Re $L / R e$		
	UNILIB	RK adaptive	Error	UNILIB	RK adaptive	Error
-70	4.168775	4.169125	$8.40 \mathrm{E}-05$	15.06390	15.0656	$1.13 \mathrm{E}-04$
-60	3.025265	3.02555	$9.41 \mathrm{E}-05$	9.104072	9.104985	$1.00 \mathrm{E}-04$
-50	2.391761	2.392082	$1.34 \mathrm{E}-04$	6.289990	6.291489	$2.38 \mathrm{E}-04$
-40	1.962656	1.963004	$1.77 \mathrm{E}-04$	4.789172	4.790518	$2.81 \mathrm{E}-04$
-30	1.63025	1.630488	$1.48 \mathrm{E}-04$	3.929591	3.930537	$2.41 \mathrm{E}-04$
-20	1.363903	1.364127	$1.64 \mathrm{E}-04$	3.430258	3.431355	$3.20 \mathrm{E}-04$
-10	1.162879	1.163185	$2.63 \mathrm{E}-04$	3.166793	3.167387	$1.87 \mathrm{E}-04$
0	1.035128	1.035269	$1.37 \mathrm{E}-04$	3.086154	3.086198	$1.41 \mathrm{E}-05$
10	0.984606	0.984623	$1.76 \mathrm{E}-05$	3.179744	3.180724	$3.08 \mathrm{E}-04$
20	1.017085	1.017244	$1.56 \mathrm{E}-04$	3.485356	3.486234	$2.51 \mathrm{E}-04$
30	1.161496	1.161737	$2.07 \mathrm{E}-04$	4.099315	4.100402	$2.65 \mathrm{E}-04$
40	1.499581	1.499838	$1.72 \mathrm{E}-04$	5.246298	5.247378	$2.06 \mathrm{E}-04$
50	2.222984	2.223192	$9.36 \mathrm{E}-05$	7.47172	7.472943	$1.64 \mathrm{E}-04$
60	3.633795	3.633871	$2.10 \mathrm{E}-05$	12.32155	12.322449	$7.30 \mathrm{E}-05$
70	7.481709	7.481518	$2.55 \mathrm{E}-05$	N/A	25.2488	N/A

Table 5.4 Comparison of L values computed using UNILIB and the Runge-Kutta adaptive method (the value of I is evaluated using RK adaptive to trace the field line, using the Hilton function L is calculated from this I value), computed using the IGRF model, at points located at different geographic latitudes, at a radius of 1 and 3 Re , along the meriodian 0° longitude, and epoch 1985.

5.2.1. Computation time

The computer evaluation time for evaluation of values of L using the IGRF model was, again, very rapid. On a Hewlett-Packard Workstation, 100 L values were evaluated in 1.15 seconds.

5.3. The Hilton function

Subroutine UL240 (evaluate the Hilton function) can be simply checked by examining the centered dipole model. UL230 (evaluate the integral invariant coordinate I) is used to compute values of I. Using these values of I, values of $I^{3} B / M$ are calculated, which, using Table 5.1, allows values of $L^{3} B / M$ and therefore L to be calculated. L computed using this method will be labelled as 'method 1 ' and will be compared to L obtained by subroutine UL220 (get information on magnetic field line), labelled as 'method 2'.

Table 5.5 shows values of L returned using the two methods at points located at different geographic latitudes and at a radius of 3 Re . The relative error ranges from 10^{-4} at high latitudes to 10^{-5} at low latitudes indicating that the Hilton function is accurately implemented through subroutine UL240.

$\lambda /{ }^{\circ}$	L / Re		Error
	Method 1	Method 2	
-70	8.546602	8.549134	$3.00 \mathrm{E}-04$
-60	3.999339	4.000219	$2.20 \mathrm{E}-04$
-50	2.419937	2.420231	$1.21 \mathrm{E}-04$
-40	1.703843	1.703837	$4.18 \mathrm{E}-04$
-30	1.333123	1.333018	$7.81 \mathrm{E}-05$
-20	1.132286	1.132223	$5.63 \mathrm{E}-05$
-10	1.030916	1.030913	$3.72 \mathrm{E}-04$
0	1.000000	1.000000	0.0
10	1.030919	1.030916	$3.69 \mathrm{E}-04$
20	1.132288	1.132225	$5.63 \mathrm{E}-05$
30	1.333123	1.333019	$7.81 \mathrm{E}-05$
40	1.703844	1.703837	$4.17 \mathrm{E}-04$
50	2.419938	2.420231	$1.21 \mathrm{E}-04$
60	3.999339	4.000219	$2.20 \mathrm{E}-04$
70	8.546603	8.549134	$2.96 \mathrm{E}-04$

Table 5.5 Verification of subroutine UL240 (evaluate the Hilton function). Comparison of L values computed using UNILIB (Method 2) and an alternative method (Method 1), computed using the centered dipole model, at points located at different geographic latitudes, and at a radius of 3 Re .

5.3.1 \quad The inverse Hilton function

The reverse transformation, subroutine UL242 (inverse the Hilton function), determines the integral invariant I from the magnetic shell parameter L. Column 2 of Table 5.6 shows I (labelled $I_{\text {initial }}$) for the IGRF 1995 model at 2 Re and 320° longitude. These I values are transformed to L by UL240 (evaluate the Hilton function) and then transformed back to I (shown in column 3 as $I_{\text {final }}$) by subroutine UL242. The I values of columns 2 and 3 are in good agreement, as expected, validating subroutine UL242. [The relative error is an order of magnitude smaller at low latitudes than high latitudes This is possibly due to the inaccuracy in the calculation of L (see Table 5.4), which is slightly greater at high latitudes and which may be amplified during the reverse transformation.]

λ / \circ	$I_{\text {initial }}$	$I_{\text {final }}$	Error
0	754.90712	754.90711	$2.00 \mathrm{E}-08$
10	3910.1963	3910.1944	$4.92 \mathrm{E}-07$
20	10039.269	10039.242	$2.65 \mathrm{E}-06$
30	20814.281	20814.115	$7.97 \mathrm{E}-06$
40	40484.986	40484.290	$1.72 \mathrm{E}-05$
50	80601.792	80599.408	$2.96 \mathrm{E}-05$
60	180342.185	180334.482	$4.27 \mathrm{E}-05$
70	539626.740	539597.902	$5.34 \mathrm{E}-05$
80	2839629.087	2839461.843	$5.89 \mathrm{E}-05$

Table 5.6 Verification of subroutine UL242 (inverse the Hilton function). Comparison of I values ($I_{\text {initial }}$) which are transformed first to L values using subroutine UL240 and then back to I using subroutine UL242 ($I_{\text {final }}$). Computed using the IGRF model, at points located at different geographic latitudes, at a radius of 2 Re , along the meriodian 320° longitude, and epoch 1995.

5.4. Evaluation of arc length

Besides evaluating L, subroutine UL220 (get information on a magnetic field line segment) computes the arc length of a magnetic field line between mirror points.

5.4.1 \quad Centered dipole model

For a centered dipole field, the length of the magnetic field line can be written as [7]

$$
\begin{equation*}
l=\int_{0}^{\lambda_{\max }} L \operatorname{Recos} \lambda \sqrt{1+3 \sin ^{2} \lambda} d \lambda \tag{5.4}
\end{equation*}
$$

This integral was evaluated using the integration routine DGAUSS [10]. Table 5.7 shows l computed at 3 Re using UNILIB subroutine UL220 and by integrating (5.4). Comparing the two sets of data, the relative error varies from 10^{-5} to 10^{-7} indicating the arc length l is reliably evaluated by UNILIB. Note that UNILIB results are more accurate at high rather than low latitudes.

$\lambda /{ }^{\circ}$	l / km		Error
	UNILIB	Exact	
-70	412498.26	412498.95	$1.68 \mathrm{E}-06$
-60	172102.5	172101.9	$3.54 \mathrm{E}-06$
-50	88115.77	88114.95	$9.32 \mathrm{E}-06$
-40	49370.97	49370.15	$1.67 \mathrm{E}-05$
-30	28383.3	28382.6	$2.59 \mathrm{E}-05$
-20	15631.9	15631.3	$3.59 \mathrm{E}-05$
-10	6946.3	6945.8	$7.64 \mathrm{E}-05$
0	0.0	0.0	0.0
10	6946.33	6946.29	$6.05 \mathrm{E}-06$
20	15631.86	15631.81	$2.88 \mathrm{E}-06$
30	28383.34	28383.28	$1.94 \mathrm{E}-06$
40	49370.97	49370.92	$1.13 \mathrm{E}-06$
50	88115.77	88115.68	$9.87 \mathrm{E}-06$
60	172102.51	172102.38	$7.32 \mathrm{E}-07$
70	412498.26	412498.13	$3.25 \mathrm{E}-07$

Table 5.4 Comparison of UNILIB and 'exact' values of the magnetic field line length l, computed using the centered dipole model, at points located at different geographic latitudes, and at a radius 3 Re

5.4.2. IGRF model

The Runge-Kutta adaptive program of section 4.3.1, written to evaluate the integral invariant I for the IGRF model, computed the length of the field line. Table 5.8 shows l computed using UNILIB with the equivalent RK adaptive values for the IGRF 1985 model at 3 Re and 180°. Similar to the centered dipole results, the relative error varies from approximately 10^{-5} to 10^{-7}, indicating that the arc length for the IGRF model is reliably evaluated.

λ / \circ	l / km		Error
	UNILIB	RK adaptive	
-70	492857.457	492858.800	$2.72 \mathrm{E}-06$
-60	218395.866	218396.600	$3.36 \mathrm{E}-06$
-50	111556.777	111557.200	$3.79 \mathrm{E}-06$
-40	62227.106	62227.400	$4.72 \mathrm{E}-06$
-30	36057.202	36057.400	$5.48 \mathrm{E}-06$
-20	20621.266	20621.400	$6.50 \mathrm{E}-06$
-10	10580.909	10581.000	$8.62 \mathrm{E}-06$
0	3164.353	3164.400	$1.50 \mathrm{E}-05$
10	3482.307	3482.400	$2.67 \mathrm{E}-05$
20	11016.863	11017.000	$1.24 \mathrm{E}-05$
30	21401.536	21401.600	$2.99 \mathrm{E}-06$
40	37746.114	37746.200	$2.28 \mathrm{E}-06$
50	66417.028	66417.000	$4.2 \mathrm{E}-07$
60	123462.868	123462.400	$3.79 \mathrm{E}-06$
70	259348.341	259347.000	$5.17 \mathrm{E}-06$

Table 5.7 Comparison of UNILIB and 'RK adaptive' values of the magnetic field line length l, computed using the IGRF model, at points located at different geographic latitudes, at a radius of 3 Re , along the meriodian 180° longitude, and epoch 1985.

5.5. Increasing the number of steps used to trace field line

Similar to the evaluation of I, a more accurate estimate of L can be obtained by UNILIB if the number of steps used to trace the field line is increased (i.e. a more accurate estimate of I is obtained which leads to a more accurate estimate of L). As discussed in section 4.4 this is achieved by modifying the parameters prop and stepx.

5.5.1. IGRF model

Table 5.9 is similar to 5.4 , but with L computed using modified values of $p r o p=0.02$, stepx $=0.02$, kum533 < 0 and xbmin= 1.0E-07 Gauss. The relative error of the UNILIB data varies from 10^{-5} at low latitudes to 10^{-7} at high latitudes, two orders of magnitude less than the relative errors of Table 5.4 (calculated using the default parameter values). As discussed, reducing the value of prop from 0.2 to 0.02 increases the number of steps used to trace the field line by a factor of 10 .

λ / \circ	$1 \mathrm{Re} L / \mathrm{Re}$			$3 \mathrm{Re} L / \mathrm{Re}$		
	UNILIB	RK adaptive	Error	UNILIB	RK adaptive	Error
-70	4.168943	4.169038	$2.28 \mathrm{E}-05$	15.065327	15.065418	$6.05 \mathrm{E}-06$
-60	3.025448	3.025489	$1.35 \mathrm{E}-05$	9.104873	9.104912	$4.27 \mathrm{E}-06$
-50	2.392016	2.392030	$5.94 \mathrm{E}-06$	6.291418	6.291436	$2.86 \mathrm{E}-06$
-40	1.962969	1.962972	$1.38 \mathrm{E}-06$	4.79047	4.79048	$5.09 \mathrm{E}-07$
-30	1.630461	1.630463	$1.41 \mathrm{E}-06$	3.930506	3.930508	$5.07 \mathrm{E}-07$
-20	1.364104	1.364101	$1.83 \mathrm{E}-06$	3.431336	3.431337	$2.91 \mathrm{E}-07$
-10	1.163167	1.163166	$7.74 \mathrm{E}-07$	3.167378	3.167378	0.0
0	1.035258	1.035258	$2.90 \mathrm{E}-07$	3.0861973	3.086197	$9.72 \mathrm{E}-08$
10	0.984621	0.984621	$3.05 \mathrm{E}-07$	3.1807125	3.180712	$1.57 \mathrm{E}-07$
20	1.017227	1.017227	$9.83 \mathrm{E}-08$	3.4862166	3.486215	$4.59 \mathrm{E}-07$
30	1.161708	1.161706	$1.64 \mathrm{E}-06$	4.100385	4.10038	$1.22 \mathrm{E}-06$
40	1.499810	1.499802	$5.20 \mathrm{E}-06$	5.2473766	5.247363	$2.59 \mathrm{E}-06$
50	2.223196	2.223177	$8.32 \mathrm{E}-06$	7.4729844	7.472954	$4.36 \mathrm{E}-06$
60	3.633973	3.633917	$1.54 \mathrm{E}-05$	12.3226	12.32253	$5.68 \mathrm{E}-06$
70	7.481921	7.481764	$2.10 \mathrm{E}-05$	25.249267	25.249092	$6.93 \mathrm{E}-06$

Table 5.8 Comparison of L values computed using UNILIB and the Runge-Kutta adaptive method (the value of I is evaluated using RK adaptive to trace the field line, using the Hilton function L is calculated from this I value), computed using the IGRF model, at points located at different geographic latitudes, at a radius of 1 and 3 Re , along the meriodian 0° longitude, and epoch 1985. Results are computed using the modified values of prop $=0.02$, step $x=0.02$, kum533 <0 and $x b m i n=1.0 \mathrm{E}-07$ Gauss.

5.5.2. Computation time

Using the modified values of $p r o p=0.02$ and stepx $=0.02$ the computer evaluation time was, surprisingly, unchanged. Using a Hewlett-Packard Workstation it still took approximately 1.15 seconds to evaluate $100 L$ values using UNILIB subroutines.

5.6. Recommendations

For the IGRF model, L computed using UNILIB subroutine UL220 had a relative error of between 10^{-4} to 10^{-5}. It was shown that by increasing the number of steps used to trace the field line by a factor of 10 the relative error was reduced to 10^{-5} to 10^{-7}. It is recommended that a parameter is introduced in subroutine UL220 allowing the user to choose the desired accuracy of L.

6. Evaluation of the lowest altitude of mirror points

6.1. Introduction

The drift shell is defined as a set of magnetic field line segments characterized by the same integral invariant I, shell parameter L and magnetic field intensity B_{m} at the mirror point. Typically, the altitude of the mirror points will vary with latitude and longitude. An important geomagnetic quantity is to determine the geographic positions of the mirror points of lowest altitude in the northern and southern hemisphere and the lowest altitude $h_{\text {min }}$. Within UNILIB, this is achieved by either subroutine UD315 (search the mirror point of lowest altitude) or subroutine UD317 (trace a magnetic drift shell [new]). Rather than examine the location of the lowest altitude mirror point, this section will examine UNILIB's evaluation of the minimum altitude $h_{\text {min }}$.

Subroutine UD315 scans the field line segments of a drift shell and determines the geographic positions of the mirror points with the lowest altitude in the northern and southern hemisphere [also required is subroutine UD310 (trace a magnetic drift shell)]. (In the UNILIB library, see Example 4 (page 88) for a sample program to search the point with lowest altitude on a magnetic drift shell.)

Subroutine UD317 traces a magnetic drift shell (used as an alternative to UD310) and returns the altitude of the lowest mirror point (though not its geographic position).

6.2. Centered dipole model

For a centered and aligned dipole model, the altitude $h_{\min }$ of the lowest mirror point is defined as [7]

$$
\begin{equation*}
h_{\min }=a_{\text {min }}+\operatorname{Re}=\operatorname{Re} L \cos ^{2} \lambda \tag{6.1}
\end{equation*}
$$

where $a_{\min }$ is the minimum altitude above the Earth surface (Re, L and λ as previously defined).

Examining (6.1), the altitude of the lowest mirror point is independent of longitude. As subroutine UD315 searches for the lowest mirror point position, as a function of longitude, by searching for an absolute minimum, it is not suitable for application to the centered dipole model. Therefore, for this instance, UD317 was applied to evaluate $h_{\text {min }}$.

Fig 6.1 shows the difference between UNILIB's estimate of $h_{\text {min }}$ and the 'exact' value computed using (6.1) for combinations of B and L. The drift shell parameter L varies between 1 and 5 and the magnetic field of the mirror points varies between 0.01 and 0.35

Gauss. The relative difference between the two estimates is strongly dependent on the magnetic field strength B with points at high B (close to the Earth) having a relative difference less than 0.25 km and as B decreases (distance increasing from the Earth) the relative difference increasing to a maximum of around 2 km .

Figure 6.1 Relative difference between UNILIB and exact estimate of $h_{\text {min }}$, computed using the centered dipole model for different combinations of B and L.

6.3. IGRF model

As the exact formula (6.1) is not applicable for the IGRF model, section (6.3.1) describes an alternative method of computing $h_{\text {min }}$.

6.3.1. \quad Alternative method of evaluating $\boldsymbol{h}_{\text {min }}$

As discussed, a drift shell is characterized by a ring of mirror points B_{m} and a surface of constant L. Figure 6.2 shows a line of constant $B\left(B=B_{\text {constant }}\right)$ and a line of constant L ($L=L_{\text {constant }}$) around the Earth. The ring of mirror points will lie on the intercept of the B
and L lines, enabling, the altitude and latitude of the mirror points to be obtained. This is achieved by obtaining the minimum of the distance $A_{i}-B_{i}$, where A_{i} and B_{i} are points that lie on the lines of constant B and L, i.e. examing Fig 6.2, $\mathrm{B}_{1}-\mathrm{A}_{1}>\mathrm{B}_{2}-\mathrm{A}_{2}>\mathrm{B}_{3}-\mathrm{A}_{3}=0$, where points A_{3} and B_{3} lie on the ring of mirror points. This procedure is repeated as a function of longitude (i.e. tracing along the ring of mirror points), which, by applying Brent's algorithm [9] (a parabolic interpolation method), enables the longitude position of the minimum altitude point to be determined. This method was applied, implemented by a Fortran program (the listing of the Fortran program is given in Appendix A3), to evaluate the minimum altitude $h_{\text {min }}$ of the mirror points. [This program required UNILIB subroutines to evaluate L which used the modified values of prop $=0.02$, stepx $=0.02$, kum533 <0 and $x b m i n=1.0 \mathrm{E}-07$ Gauss.]

Figure 6.2 An alternative method of evaluating $h_{\text {min }}$. The diagram shows a line of constant B and a line of constant L. The ring of mirror points will lie on the intercept of the B and L lines.

This method was verified by evaluating $h_{\text {min }}$ for the centered dipole model and comparing with the exact estimate (6.1). Fig. 6.3 shows that the relative difference between the two estimates varies from -0.1 km for high B to 0.7 km for low B. The estimates produced by this alternative method are considerably better than the UNILIB results of Fig 6.1 and indicate that the method is a valid alternative for which to compare UNILIB IGRF results.

Figure 6.3 Verification of the alternative method of calculating $h_{\text {min }}$. Relative difference between the alternative and exact estimate of $h_{\text {min }}$, computed using the centered dipole model for different combinations of B and L.

6.3.2 Results

Fig 6.4 shows the difference between UNILIB's estimate of $h_{\text {min }}$ (computed using subroutine UD315) and the estimate computed using the alternative method for combinations of B and L and epoch 1985. The difference between the two estimates is typically less than 0.5 km , though, for low B (far from the Earth surface) the difference increases to a maximum of around 2.5 km .

Figure 6.4 Relative difference between UNILIB and alternative estimate of $h_{\text {min }}$, computed using the IGRF model for different combinations of B and L and epoch 1985.

6.3.3. Computation time

Using a Hewlett-Packard Workstation it took approximately 1 second for UNILIB to evaluate $h_{\text {min }}$ for each combination of B and L.

6.4. Increasing the number of steps used to trace field line

As discussed in section 5.5, the accuracy that UNILIB computes L can be increased if the parameters prop and stepx are modified from their default values. This section examines UNILIB estimates of $h_{\text {min }}$ computed using the modified values prop= 0.02 and step $x=0.02$.

6.4.1 Centered dipole model

Fig. 6.5 is similar to Fig. 6.1 but with UNILIB using the modified values. The UNILIB results are substantially more accurate with the maximum difference between the two sets of results now 0.4 km , while for points close to the Earth's surface (high B,
low L) the relative difference is almost zero.

Figure 6.5 Relative difference between UNILIB and exact estimate of $h_{\text {min }}$, computed using the centered dipole model for different combinations of B and L. Results are computed using the modified values of prop= 0.02 and stepx $=0.02$.

6.4.2. IGRF model

Fig. 6.6 is similar to Fig. 6.4 but with UNILIB using the modified values. Again, UNILIB results are substantially more accurate with the maximum difference now 0.3 km, while for points close to the Earth's surface the relative difference is approximately 0.15 km .

Figure 6.6 Relative difference between UNILIB and alternative estimate of $h_{\text {min }}$, computed using the IGRF model for different combinations of B and L and epoch 1985. Results are computed using the modified values of prop=0.02 and stepx $=0.02$.

6.5. Recommendations

Increasing the number of steps used to trace the field lines significantly improved the accuracy that UNILIB computes $h_{\text {min }}$. Similar to chapters 4 and 5 , it is recommended that a input parameter is introduced that allows the user to choose the desired accuracy that $h_{\min }$ is computed.

7. Conclusion

This report has confirmed the usefulness of the UNILIB Fortran library (version 2.03) in calculating some of the basic geomagnetic quantities, such as, the (B, L) coordinates, the third adiabatic invariant I and the altitude of the lowest mirror point $h_{\text {min }}$ (the accurate evaluation of these quantities indicates UNILIB's ability to trace magnetic field lines and drift shells). The validation was for the centered dipole model, IGRF model, and, for the external magnetic field, Tsyganenko's model. The centered dipole model, though not particularly realistic, was useful as 'exact' analytical expressions were often available. Given below is a summary of UNILIB's implementation of the IGRF model in the calculation of B, I, L and $h_{\text {min }}$.

UNILIB was applied to evaluate the geomagnetic field strength, with results in excellent agreement with the 'benchmark' GEOPACK and exact analytical results.

UNILIB's estimation of I, for the IGRF model, showed a relative error of between 10^{-3} and 10^{-4}, though, by increasing by a factor of 10 the number of steps used to trace the field line (modified values of prop= 0.02 and stepx $=0.02$ in common block UC190), the relative error decreased to between 10^{-4} and 10^{-5} (though at the expense of a longer computation time). It is shown in chapter 4 how to modify the parameters prop and stepx, though it is recommended that UNILIB be adapted so that, rather than altering the value of prop, a parameter is introduced allowing control over the number of steps used to trace a field line or the accuracy of I returned.

UNILIB's estimation of L, for the IGRF model, showed a relative error of between 10^{-4} and 10^{-5}. Again, by increasing the number of steps to trace the field line by a factor of 10 , the relative error decreased to between 10^{-6} and 10^{-7}. It was again recommended that some control over the accuracy of L returned be introduced.

UNILIB's estimation of the minimum altitude of a drift shell $h_{\min }$, for the IGRF model, was accurate to within 0.3 to 3 km (the disagreement increasing as the distance from the Earth increased). Increasing the number of steps used to trace a field line by a factor of 10 reduced the disagreement to between 0.15 and 0.3 km for all combinations of B and L examined. Again, it is recommended that a parameter be introduced allowing control over the accuracy of $h_{\text {min }}$ returned.

It was shown that the accuracy of I, L and $h_{\text {min }}$ could be substantially improved if the number of steps used to trace field lines was increased. It was recommended that, within the Fortran subroutines, an input parameter is introduced that allows the user to either select the accuracy with which a field line is traced or the accuracy of the particular geomagnetic parameter returned. This could be easily implemented in a future version of UNILIB.

This study has shown that the UNILIB software library is an accurate and reliable method of computing basic geomagnetic quantities. In general it was found that the library was easy to use and of great use to the magnetospheric modelling community.

References

[1] http://www.magnet.oma.be/home/unilib
[2] www-spof.gsfc.nasa.gov/Modeling/geopack.html
[3] http://nssdc.gsfc.nasa.gov/space/model/magnetos/bilcal.html
[4] Russell, R. T., 'Geophysical Coordinate Transformations’, Cosmic Electrodynamics, Vol. 2, pp. 184-196, 1971.
[5] 'Handbook of geophysics and the space environment', Air Force Geophysics Laboratory, Hancolm, MA., Rept. No. ADA 167 000, avail. from NTIS (Nat. Tech. Inf. Service, U.S. Dept. of Commerce, Springfield, Va., 22161), chapter 4, 1985.
[6] Tsyganenko, N. A., 'A magnetospheric magnetic field model with a warped tail current sheet’, Planet. Space Sci., Vol. 37, No. 1, pp 5-20, 1989.
[7] Hess, W. N., The Radiation Belt and Magnetosphere, Blaisdell Publishing Company, Waltham MA., 1968.
[8] McIlwain, C. E., 'Coordinates for mapping the distribution of magnetically trapped particles’, Journal of Geophysical Research, Vol. 66, No. 11, pp 3681-3691, Nov 1961.
[9] http://www.ulib.org/webRoot/Books/Numerical_Recipes
[10] http://wwwinfo.cern.ch/asd/cernlib/libraries.html

Appendix

A. 1 Fortran program to compute I for centered dipole model

```
*******************************************************$
***This program compute the integral invariant belongs
***to the McIlwain's article "coordinates for mapping
***the distribution of magnetically trapped particles
***Journal of Geophysical research Vol 66 No 111961
    program EVABL
    implicit double precision (a-z)
    real value,tier
    real*8 i,pi,r0
        REAL*8 gcolat,gradius,glong,i3bm,bpos,moment
    COMMON/GEOPOS/gcolat,gradius,glong
    COMMON/RESULT/I3BM,BPOS,MOMENT
    common/INVA/invari
    call initnorvar
***moment is year dependent the value below is for the 1995 year**
    moment=0.30207661
    do i=90.,10.,-10.
    pi=4.d0*atan(1.)
**** define geographic position********
    glong=0.
    gradius=6371.2
    gcolat=i
    la=(gcolat)*pi/180.d0
***compute the equatorial radial distance
    r0=gradius/dcos(la)**2.
***** print the latitude and the I belongs to the article formula
    print*,90.-gcolat,100000*(funh1(la)*moment*(gradius/r0)**3.)
    enddo
    stop
    end
***** compute the invariant I at a latitude lamda, see equation 1of article ***
    real*8 function funh1(lat)
    implicit double precision (a-z)
    common/LATIT/latmir
    external integrand
    zero = 0.
    eps = 0.001
    latmir=dabs(lat)
    sinlatmir = dsin(latmir)
    funh1 = dgauss(integrand,zero,sinlatmir,eps)
    return
    end
```

******** compute the integrandi, see equation 1 of article****
*****it is the first step for the I calculation**
real $* 8$ function integrand(sivar)
implicit double precision (a-z)
common/LATIT/latmir
common/INVA/invari
simir $=$ dsin(latmir)
d1 $=1 . \mathrm{d} 0+3 . \mathrm{d} 0 *$ sivar * sivar
$\mathrm{d} 2=1 . \mathrm{d} 0+3 . \mathrm{d} 0 *$ simir*simir
d3 $=1 . \mathrm{d} 0-$ simir*simir
d4 = 1.d0- sivar*sivar
fact1 = dsqrt(d1/d2)
fact2 $=(\mathrm{d} 3 / \mathrm{d} 4)^{* *} 3$
integrand $=2 . d 0 * \operatorname{dsqrt}(1 . d 0-f a c t 1 * f a c t 2) * \operatorname{dsqrt}(\mathrm{~d} 1)$
return
end
******** compute h2 function, see equations 3 and 4 of article real*8 function funh2(lamda)
implicit double precision (a-z)
funh2 $=\operatorname{dsqrt}\left(1 .+3 . * \operatorname{dsin}\left(\right.\right.$ lamda) $\left.{ }^{* *} 2\right) /(\operatorname{dcos(lamda)})^{* *} 6$.
return
end
******** compute h4 function ${ }^{* ~}$
real $* 8$ function funh4(lamda)
implicit double precision (a-z)
common/LATIT/latmir
funh4 $=$ funh2(lamda) * (funh1(latmir))**3
return
end
******* table 1 of the article $\mathrm{I}^{3} \mathrm{~B} / \mathrm{M}$ and $\mathrm{L}^{3} \mathrm{~B} / \mathrm{M}$
subroutine initnorvar
implicit double precision (a-z) integer cnt,l
parameter (l=1000)
real lbm(l),ibm(l),lat(l)
common/LATIT/latmir
common/MAGNVAL/lbm,ibm
un $=1$.
neufcentnn = 999.
pi $=\operatorname{dacos}(-u n)$
lamdamin $=0$.
lamdamax $=$ pi/2.1
dlamda $=$ (lamdamax-lamdamin)
delta = dlamda/neufcentnn
open(1,file='ivalue.res',status='unknown')
do cnt = 1,1000
latmir $=$ delta*(float(cnt)-1.) + lamdamin
ibm(cnt)=funh4(latmir)
$\operatorname{lbm}(\mathrm{cnt})=$ funh2(latmir)

* write(1,*)cnt,ibm(cnt),lbm(cnt)
*5 format (I4,1x,2f15.2)
enddo
close(1)
return
end
*******interpolation $* * * * * * * * * * * * * * * * ~$
****used for interpolation in the previously computed table real*8 function interpol(val)
implicit double precision (a-z) integer 1
parameter (l=1000)
real lbm(l),ibm(l)
real val common/MAGNVAL/lbm,ibm
interpol=divdif(lbm,ibm,l,val,1)
return
end

A. 2 Fortran program to compute I for IGRF model

```
    program main
    implicit double precision (a-z)
    double precision totlong,xf
    integer ifail
    INCLUDE 'structure.h'
    COMMON/FIELD/bmod,brho,btheta,bphi
    COMMON/GLOB/eps,re1
    COMMON/END1/totlong
    COMMON/END2/xf
    COMMON/PAS/dlf
    COMMON/LMA/lva
    RECORD/ZGEO/mpos
    RECORD/ZVEC/mb,mnr
    do a=60.d0,80.d0,10.
    call initialise
    alt=re1
    ala=a
    alo=0.d0
    alt=3.*re1
    dlf=0.7
    test=lvalue(alt,alo,ala)
        write(6,111)test,lva,totlong,ala
111 format(4(1x,f18.6))
    enddo
    stop
    end
    double precision function lvalue(alt,alo,ala)
    double precision alt,alo,ala,bmod,brho,btheta,bphi,bmir,integr
    real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30)
    real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl
    real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3
    double precision invaria,eps,re1
    real*8 fvet,pvet,epsomeg,dltalt
    real*8 epskm,epsrel
    real*8 stplst,xclat
real*8 lva
integer flag,modf,okstep,dir
    integer*4 kmflg,kum533
    integer i,dim,a
INCLUDE 'structure.h'
COMMON/FIELD/bmod,brho,btheta,bphi
COMMON/STOP/flag,modf,okstep,dir
COMMON/MIRR/bmir,integr
COMMON/GLOB/eps,re1
COMMON/INVA/invaria
RECORD/ZLBL/mlab
```

RECORD/zfln/mlin
RECORD/zseg/mele(nx170) RECORD/ZIMF/mint

RECORD/Zsun/msun
RECORD/Zemf/mext
COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet,

* epsomeg,dltalt

COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel,

* stplst,xclat,kmflg,kum533

COMMON /UC170/nsg,kgp,mlab,mlin,mele
COMMON /UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma
COMMON/UC140/ mint,mext,msum COMMON/LMA/lva

* compute magnetic field vector
call afield (alt,alo,ala)
bmir=bmod
* follow magnetic field line towards the north
call tracenorth(alt,alo,ala)
call revers
if(flag.eq.1)then
flag $=0$
$\operatorname{modf}=0$
okstep=0
* follow magnetic field line towards the south
call tracesouth(alt,alo,ala) endif
* compute invariant I
call invarian
mlab.finv=invaria
mlab.fbmp=bmir
mlab.linv=.TRUE.
mlab.lbmp=.TRUE.
* for dipolar field remmove comment
* gmagmo=mint.gmmo
* Use Hilton function to compute L from I
call UL240(mlab,ifail)
if(ifail.lt.0)then
print*,ifail
endif
* lva is the integral invariant I value and lvalue is the McIlwain parameter L
lva=invaria
lvalue=mlab.flmi
return
end
subroutine initialise

INCLUDE 'structure.h'
INTEGER*4 kunit, kinit, ifail, kint, kext, nfbm, noprint
CHARACTER*32 lbint, lbext
REAL*8 year, param(10)
real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30)
real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl
real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3
real*8 fvet,pvet,epsomeg,dltalt
double precision eps,re1,bmir,dlf
real*8 epskm,epsrel
real*8 stplst,xclat
integer*4 kmflg,kum533
integer flag,modf,okstep,dir
COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet,

* epsomeg,dltalt

COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel,

* stplst,xclat,kmflg,kum533

COMMON/UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma
COMMON/UC140/mint,mext,msum
COMMON/STOP/flag,modf,okstep,dir
COMMON/MIRR/bmir,integr
COMMON/INTER/var,inte
COMMON/GLOB/eps,re1
RECORD /zimf/ mint
RECORD /zsun/ msun
RECORD /zemf/ mext
RECORD/ZDAT/ mdate
C
C initialisation
C
DATA kunit, kinit, kint, kext, nfbm, noprint/ $0,1,0,0,1,-1 /$
DATA year, param/ 1985.0d0, 10*0.0d0/
eps $=0.00001$
re1=6371.2
flag $=0$
modf=0
okstep=0
dir=1
mdate.iyear $=1985$
mdate.imonth $=1$
mdate.iday $=1$
mdate.ihour $=0$

```
    mdate.imin = 0
    mdate.secs = 0.0d0
C
*Initialize the UNILIB library
```

CALL UT990 (kunit, kinit, ifail)
IF(ifail .LT. 0)STOP

* modify some values to trace magnetic field line outside the magnetopause

```
xbmin=0.00000001
    xrmin=0.1
    kum533=-1
    xbmax=100000000.
```

* set geomagnetic field model

CALL UM510 (kint, year, lbint, kunit, ifail)
IF(ifail .LT. 0)STOP

* for centered dipol field remove comments
* mint.norder $=2$
* mint.label = 'Dipolar magnetic field
* mint.coef(2,1) = mint.gmmo * $1.0 \mathrm{~d}+05$
* $\quad \operatorname{mint} . \operatorname{coef}(1,2)=0.0 \mathrm{~d}+00$
* mint.coef(2,2) $=0.0 \mathrm{~d}+00$
* mint.elong $=0.0 \mathrm{~d}+00$
* mint.colat $=0.0 \mathrm{~d}+00$

CALL UT540 (mdate)
CALL UM520 (kext, mdate.amjd, param,lbext, kunit, ifail)
IF(ifail .LT. 0)STOP
return
end
subroutine tracenorth(alt,alo,ala)

* this subroutine trace a magnetic field line in the northem direction
* and store the length of the field line already computed as well as the integrand $\sqrt{1-\frac{B}{B_{m}}}$

[^0]```
COMMON/OPT/bopti,altopti,latopti,lonopti,newdlopt,integropti
COMMON/NEWP/newalt,newlat,newlon,newdl
COMMON/END/totlong,aintegr,atrajet,b
COMMON/STOP/flag,modf,okstep,dir
COMMON/INTER/var,inte
COMMON/MIRR/bmir,integr
COMMON/NPAS/i,dim
COMMON/PAS/dlf
```

    newdl=0.
    integr \(=0\).
    * perform the first step towards the north
call step (alt,alo,ala,dlf)
call integrand
aintegr(1)=integr
atrajet(1)=newdl
$\mathrm{i}=1$
do while(flag.eq.0)
$\mathrm{i}=\mathrm{i}+1$
    * perform one step towards the north
call step(newalt,newlon,newlat,dlf)
* compute the integrand $\sqrt{1-\frac{B}{B_{m}}}$
call integrand
if(modf.eq.0)then
aintegr(i)=integr
atrajet(i)=newdl
else
$i=i$
inte(i)=integr
$\operatorname{var}(\mathrm{i})=$ newdl
endif
enddo
totlong=newdl
return
end
subroutine revers
double precision aintegr(3100000), atrajet(3100000),b(3100000)
double precision $\operatorname{var}(3100000)$, inte(3100000)
double precision totlong
integer i,n,dim,m
COMMON/END/totlong,aintegr,atrajet,b
COMMON/INTER/var,inte
COMMON/NPAS/i,dim
* reverse the order in the table computed by trace north

```
do n=i-1,0,-1
var(i-n)=dabs(atrajet(n+1)-totlong)
inte(i-n)=aintegr(n+1)
enddo
dim=i-n-1
return
end
```

********************************************************
subroutine tracesouth(alt,alo,ala)

* trace magnetic field line towards the south
double precision bopti,altopti,latopti,lonopti,newdlopt,integropti
double precision newalt,newlat,newlon,newdl
double precision $\operatorname{var}(3100000)$,inte(3100000)
double precision alt,ala,alo
double precision bmir,integr
double precision dlf
integer flag,modf,okstep,dir
integer m,i,dim
COMMON/OPT/bopti,altopti,latopti,lonopti,newdlopt,integropti
COMMON/NEWP/newalt,newlat,newlon,newdl
COMMON/STOP/flag,modf,okstep,dir
COMMON/MIRR/bmir,integr
COMMON/INTER/var,inte
COMMON/END1/totlong
double precision totlong
COMMON/NPAS/i,dim
COMMON/PAS/dlf
dir=-1
$\mathrm{m}=\mathrm{i}$
newdl=0.
integr=0.
call step (alt,alo,ala,dlf)
call integrand
do while(flag.eq.0)
$\mathrm{m}=\mathrm{m}+1$
call step(newalt,newlon,newlat,dlf)
call integrand
if(modf.eq.0)then
$\operatorname{var}(m+1)=$ newdl
inte $(m+1)=$ integr
else
$\mathrm{m}=\mathrm{m}-1$
$\operatorname{var}(m+1)=$ newdl
inte $(m+1)=$ integr
endif
$\operatorname{dim}=m+1$
end do
totlong=newdl
return
end
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
subroutine integrand
* compute the integrand $\sqrt{1-\frac{B}{B_{m}}}$
double precision integr,bmir
double precision bmod,brho,btheta,bphi
double precision oldalt,oldala,oldalo,oldbmod,dlold
COMMON/MIRR/bmir,integr
COMMON/FIELD/bmod,brho,btheta,bphi
COMMON/OLD/oldalt,oldala,oldalo,oldbmod,dlold
if(bmod.gt.bmir)then
if((dabs(oldbmod-bmir)).le.1.0E-008)then
integr=0.
else
integr=dsqrt(1.-(oldbmod/bmir))
endif
else
integr=dsqrt(1.-(bmod/bmir))
endif
return
end
subroutine afield (alt,alo,ala)
* compute magnetis field

INCLUDE 'structure.h'
double precision alt,alo,ala
double precision bmod,brho,btheta,bphi
real*8 pi,deg,re,gmagmo,eclipt,geoid,uma
real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl
real*8 fvet,pvet,epsomeg,dltalt
real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3
real*8 epskm,epsrel
real*8 stplst,xclat
integer*4 kmflg,kum533
integer*4 ifail
integer i,dim
RECORD/Zvec/ mb
RECORD/ZGEO/ mpos
RECORD /zimf/ mint
RECORD /zsun/ msun
RECORD /zemf/ mext
COMMON/NPAS/i,dim
COMMON/UC140/ mint,mext,msum
COMMON/FIELD/bmod,brho,btheta,bphi
COMMON/UC160/pi,deg,re,gmagmo,eclipt,geoid,uma
COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel,

* stplst,xclat,kmflg,kum533

COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet,

* epsomeg,dltalt
***set geographic position
mpos.radius=alt
mpos.colat=90.-ala
mpos.elong=alo
* compute geomagnetic field vector

CALL UM530(mpos,mb,ifail)
IF( ifail .LT. 0 )then print*,ifail,ala,mpos.colat stop
endif
bmod=mb.dnrm
brho=mb.rho
btheta=mb.theta
bphi=mb.phi
return
end

***this subroutine set the step along the field line*****
subroutine step (alt,alo,ala,dlf)

* compute one step along the magnetic field line belongs to the Runge-Kutta adaptive method

INCLUDE 'structure.h'
double precision brho,btheta,bphi,bmod,alt,ala,alo,dlf
double precision oldalt,oldala,oldalo,oldbmod,dlold
double precision newalt,newlat,newlon,newdl
double precision oldbphi, oldbthet, oldbrho
real*8 pi,deg,re,gmagmo,eclipt,geoid,uma
double precision bmir,integr
double precision $y(3)$,dydx(3), x,h,yout(3),you(3),yscale(3)
real*8 htry,epss,hdid,hnext,xx
integer flag,modf,okstep,dir,n
COMMON/GLOB/eps,re1
COMMON/MIRR/bmir,integr
COMMON/STOP/flag,modf,okstep,dir
COMMON/FIELD/bmod,brho,btheta,bphi
COMMON/NEWP/newalt,newlat,newlon,newdl
COMMON/BOLD/oldbphi, oldbthet, oldbrho
COMMON/OLD/oldalt,oldala,oldalo,oldbmod,dlold
COMMON /UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma
COMMON/OUT/you
COMMON/OUT1/xx
RECORD/ZGEO/mpos,mpos1
call afield(alt,alo,ala)
oldalt=alt
oldala=ala
oldalo=alo
oldbmod=bmod
oldbrho=brho

```
 oldbthet=btheta
 oldbphi=bphi
 dlold=newdl
 mpos.radius=alt
 mpos.colat=90.-ala
 mpos.elong=alo
 y(1)=alt
 y(2)=90.-ala
 y(3)=alo
****vecteur deplacement****
 sinthe=dsin(mpos.colat*deg)
 dydx(1)=brho/bmod
 dydx(2)=btheta/(bmod*mpos.radius)
 dydx(3)=bphi/(bmod*mpos.radius*sinthe)
 x=newdl
 n=3
 htry=dlf
 epss=0.01
 yscale(1)=0.1
 yscale(2)=0.1
 yscale(3)=0.1
* Runge-Kutta adaptive
 call rkqs(y,dydx,n,x,htry,epss,yscale,hdid,hnext)
**** new position****
 if(dir.eq.1)then
 mpos1.radius= mpos.radius+you(1)
 mpos1.colat=mpos.colat+you(2)/deg
 mpos1.elong=mpos.elong+you(3)/deg
 else
 mpos1.radius= mpos.radius-you(1)
 mpos1.colat=mpos.colat-you(2)/deg
 mpos1.elong=mpos.elong-you(3)/deg
 endif
 newdl=xx
 newalt=mpos1.radius
 newlat=90.-mpos1.colat
 newlon=mpos1.elong
 call afield(newalt,newlon,newlat)
 if(bmod.lt.bmir)then
 okstep=1
 oldbmod=bmod
 newalt=newalt
 newlat=newlat
 newlon=newlon
 newdl=newdl
 else
```

```
 oldbmod=oldbmod
 newalt=oldalt
 newlat=oldala
 newlon=oldalo
 newdl=dlold
 if (modf.eq.0)then
 modf=1
 call ajustep(newalt,newlon,newlat,htry)
 endif
 endif
 return
 end
**$
 subroutine ajustep(alt,alo,ala,dlf)
* this subroutine control the field line tracing at location close to the mirror point
```

```
 double precision bopti,altopti,latopti,lonopti,newdlopt,integropti
```

    double precision bopti,altopti,latopti,lonopti,newdlopt,integropti
    double precision oldalt,oldala,oldalo,oldbmod,dlold
    double precision oldalt,oldala,oldalo,oldbmod,dlold
    double precision newalt,newlat,newlon,newdl
    double precision newalt,newlat,newlon,newdl
    double precision ecart,dlf,pas
    double precision ecart,dlf,pas
    double precision alt,alo,ala
    double precision alt,alo,ala
    double precision bmir,integr
    double precision bmir,integr
    double precision eps,re1
    double precision eps,re1
    integer flag,modf,okstep,dir
    integer flag,modf,okstep,dir
    COMMON/OPT/bopti,altopti,latopti,lonopti,newdlopt,integropti
    COMMON/OPT/bopti,altopti,latopti,lonopti,newdlopt,integropti
    COMMON/OLD/oldalt,oldala,oldalo,oldbmod,dlold
    COMMON/OLD/oldalt,oldala,oldalo,oldbmod,dlold
    COMMON/NEWP/newalt,newlat,newlon,newdl
    COMMON/NEWP/newalt,newlat,newlon,newdl
    COMMON/STOP/flag,modf,okstep,dir
    COMMON/STOP/flag,modf,okstep,dir
    COMMON/MIRR/bmir,integr
    COMMON/MIRR/bmir,integr
    COMMON/GLOB/eps,re1
    COMMON/GLOB/eps,re1
    okstep=0
        ecart=100.
        pas=dlf
    if((dabs(oldbmod-bmir)).le.1.0E-008)then
    flag=1
    endif
        do while(oldbmod.lt.bmir.and.(dabs(oldbmod-bmir)).gt.eps.and.
    + pas.gt.0.01)
if(okstep.eq.0)then
pas=pas/2.
endif
call step(newalt,newlon,newlat,pas)
call integrand
okstep=0
if((dabs(oldbmod-bmir)).lt.ecart)then
ecart=dabs(oldbmod-bmir)
bopti=oldbmod
altopti=newalt
latopti=newlat
lonopti=newlon
newdlopt=newdl
integropti=integr

```
endif
end do
if((dabs(oldbmod-bmir)).le.eps.or.pas.le.0.01)then
flag=1
endif
return
end
***\$
double precision function integran(x)
* subroutine of interpolation in the table of \(a\) and \(b\)
* \(a\) is the length of the field line computed and \(b\) is the integrand \(\sqrt{1-\frac{B}{B_{m}}}\)
* This interpolation must be perform to solve the integral for I calculation \(I=\int_{a 1}^{a 1^{*}} \sqrt{1-\frac{B}{B_{m}}} d l\)
double precision \(\mathrm{x}, \mathrm{w}\)
double precision \(\operatorname{var}(3100000)\),inte(3100000)
integer xi,xf,xm,ns
integer i,dim
COMMON/INTER/var,inte
COMMON/NPAS/i,dim
xi=0
\(x f=\operatorname{dim}+1\)
10 if(xf-xi.gt.1)then
\(\mathrm{xm}=((\mathrm{xf}+\mathrm{xi}) / 2)\)
if(x.gt.var(xm))then
xi=xm
else
xf=xm
endif
goto 10
endif
if(x.eq.var(1))then
ns=1
else if(x.eq.var(dim))then
ns=dim
else
ns=xi
endif
\(\mathrm{w}=(\) inte(ns+1)-inte(ns))/(var(ns+1)-var(ns))
integran=w*(x-var(ns))+inte(ns)
return
end

subroutine invarian
* compute I \(I=\int_{a 1}^{a 1^{*}} \sqrt{1-\frac{B}{B_{m}}} d l\)
double precision var(3100000), inte(3100000)
```

    double precision xi,xf,epsi,invaria
    integer i,dim
    COMMON/INTER/var,inte
    COMMON/INVA/invaria
    COMMON/NPAS/i,dim
    COMMON/END2/xf
    external integran
    epsi=0.0001
    xi=var(1)
    xf=var(dim)
    invaria=dgauss(integran,xi,xf,epsi)
    return
    end
    ********************************************************\$
subroutine derivs(x,y,dxdy)

* compute derivative to introduce into the Runge Kutta subroutine
double precision alt,alo,ala,bmod,brho,btheta,bphi
double precision x,y(3),dxdy(3),colat,sinth
real*8 pi,deg,re,gmagmo,eclipt,geoid,uma
COMMON/FIELD/bmod,brho,btheta,bphi
COMMON/UC160/pi,deg,re,gmagmo,eclipt,geoid,uma
alt=y(1)
alo=y(3)
ala=90.-y(2)
call afield(alt,alo,ala)
colat=90.-ala
sinth=dsin(colat*deg)
dxdy(1)=brho/bmod
dxdy(2)=btheta/(alt*bmod)
dxdy(3)=bphi/(alt*bmod*sinth)
return
end
******************************************************
subroutine rkck(y,dydx,n,x,h,yout,yerr)
COMMON/OUT/you
integer n,nmax
real*8 h,x,dydx(3),y(3),yerr(3),yout(3),you(3)
parameter (nmax=50)
integer i
real*8 ak2(nmax), ak3(nmax), ak4(nmax), ak5(nmax), ak6(nmax),
    * ytemp(nmax),a2,a3,a4,a5,a6,b21,b31,b32,b41,b42,b43,b51,b52,
    * b53,b54,b61,b62,b63,b64,b65,c1,c2,c3,c4,c5,c6,dc1,dc3,dc4,dc5,dc6
parameter (a2=.2,a3=.3,a4=.6,a5=1.,a6=.875,b21=.2,b31=3./40.,
    * b32=9./40.,b41=.3,b42=-.9,b43=1.2,b51=-11./54.,b52=2.5,
    * b53=-70./27.,b54=35./27.,b61=1631./55296.,b62=175./512.,
    * b63=575./13824.,b64=44275./110592.,b65=253./4096.,
    * c1=37./378.,c3=250./621.,c4=125./594.,c6=512./1771.,
    * dc1=c1-2825./27648.,dc3=c3-18575./48384.,
    * dc4=c4-13525./55296.,dc5=-277./14336.,dc6=c6-.25)
do i=1,n
ytemp(i)=y(i)+b21*h*dydx(i)
enddo
call derivs(x+a2*h,ytemp,ak2)

```
```

    do i=1,n
        ytemp(i)=y(i)+h*(b31*dydx(i)+b32*ak2(i))
    enddo
    call derivs(x+a3*h,ytemp,ak3)
    do i=1,n
    ytemp(i)=y(i)+h*(b41*dydx(i)+b42*ak2(i)+b43*ak3(i))
    enddo
    call derivs(x+a4*h,ytemp,ak4)
    do i=1,n
    ytemp(i)=y(i)+h*(b51*dydx(i)+b52*ak2(i)+b53*ak3(i)+b54*ak4(i))
    enddo
    call derivs(x+a5*h,ytemp,ak5)
    do i=1,n
    ytemp(i)=y(i)+h*(b61*dydx(i)+b62*ak2(i)+b63*ak3(i)+b64*ak4(i)+
    * b65*ak5(i))
    enddo
    call derivs(x+a6*h,ytemp,ak6)
    do i=1,n
    yout(i)=y(i)+h*(c1*dydx(i)+c3*ak3(i)+c4*ak4(i)+c6*ak6(i))
    enddo
    do i=1,n
    you(i)=yout(i)-y(i)
    enddo
    do i=1,n
    yerr(i)=h*(dc1*dydx(i)+dc3*ak3(i)+dc4*ak4(i)+dc5*ak5(i)+dc6*ak6(i))
    enddo
    return
    end
    ```
\(* ~\)
 subroutine rkqs(y,dydx,n,x,htry,epss,yscale,hdid,hnext)
* Runge Kutta subroutine see Numerical recipies in fortran
integer n,nmax
real*8 epss,hdid,hnext,htry,xx,x,dydx(3),y(3),yscale(3)
parameter (nmax=50)
integer i
real*8 errmax,h,htemp,xnew,yerr(nmax),ytemp(nmax),safety,pgrow,
* pshrnk,errcon

\section*{COMMON/OUT1/xx}
parameter \((\) safety \(=0.9\), pgrow=-.2,pshrnk=-.25,errcon=1.89e-4)
h=htry
1 call rkck(y,dydx,n,x,h,ytemp,yerr)
errmax=0.
\(\mathrm{n}=3\)
do \(\mathrm{i}=1, \mathrm{n}\)
errmax \(=\) max(errmax,dabs(yerr(i)/yscale(i)))
enddo
errmax=errmax/epss
if(errmax.gt.1)then
htemp=safety*h*(errmax**pshrnk)
\(\mathrm{h}=\operatorname{sign}(\max (\operatorname{dabs}(\mathrm{htemp}), 0.1 * \operatorname{dabs}(\mathrm{~h})), \mathrm{h})\)
```

xnew=x+h
if(xnew.eq.x)pause 'stepsize underflow'
goto 1
else
if(errmax.gt.errcon)then
hnext=safety*h*(errmax**pgrow)
else
hnext=5.*h
endif
hdid=h
xx=x+h
do i=1,n
y(i)=ytemp(i)
enddo
return
endif
end

```

\section*{A. 3 Fortran program to compute \(\boldsymbol{h}_{\text {min }}\)}
program main
implicit double precision (a-z)
INCLUDE 'structure.h'
integer max

COMMON/FIXED/fixlon,fixlat,fixalt
COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax
COMMON/ALTI/alt1
COMMON/BLCOR/fltarget,btarget
COMMON/minimum/x
COMMON/mom/moment
COMMON/UC140/mint,mext,msum

RECORD /zimf/ mint
RECORD /zsun/ msun
RECORD/zemf/ mext
external paltmir
C
C the parameters below are use in Brent' method
C see numerical recipes part 10.2
C
\(a x=-180\).
\(b x=-40\).
cx=180.
tol=0.01
call initialise
open(11,file='altmigrf.res',status='unknown')

C loops over \(L\) and \(B\) values
C Bmin=mint.gmmo/L3
do \(a=1 ., 5.1, .1\)
\(\mathrm{bb}=\) mint.gmmo/a**3.
if (bb.ge.0.01)then
pas=-0.005
endif
if (bb.lt.0.01)then
pas=-0.0005
endif
bbb=bb-pas
do \(b=0.35\),bbb,pas
fltarget=a
btarget=b
faltmax=fltarget*6371.2d0*2.
fixalt=fltarget*6371.2d0

C
search the altitude minimu as a function of longitude
test=brent(ax,bx,cx,paltmir,tol,xmin)
latm=platmir(x)
* write(11,9)a,b,latm,x,test
write(6,9)a,b,latm,x,test
9 format(1x,5(F15.7))
end do
end do
close(11)
stop
end
subroutine initialise
double precision fltarget,btarget,alpha
double precision fixlon,fixlat,fixalt
double precision flatmin,flatmax,faltmin,faltmax
double precision year,param(10),moment
integer*4 kunit,kinit,ifail,kint,kext
real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30)
real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl
real*8 fvet,pvet,epsomeg,dltalt
real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3
real*8 epskm,epsrel
real*8 stplst,xclat
integer*4 kum533
character*32 lbint,lbext
INCLUDE 'structure.h'

RECORD/ZDAT/mdate
RECORD/ZGEO/ mgeod, mpos
RECORD/ZVEC/mb
RECORD /zimf/ mint

RECORD /zsun/ msun
RECORD /zemf/ mext

COMMON/mom/moment
COMMON/FIXED/fixlon,fixlat,fixalt
COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax
COMMON/BLCOR/fltarget,btarget
COMMON/PITCH/alpha
COMMON/UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma
COMMON/UC140/mint,mext,msum
COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet,
* epsomeg,dltalt

COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel,
* stplst,xclat,kmflg,kum533

DATA kunit,kinit/0,1/
DATA kint,kext/0,0/
DATA year,param,alpha/1985.0d0,10*0.0d0,90.0d0/
flatmin \(=20.0 \mathrm{~d} 0\)
flatmax=-65.0d0
faltmin=6371.2d0*.9d0
fixlon=0.0d0
fixlat=0.0d0
mdate.iyear=1985
mdate.imonth=1
mdate.iday=1
mdate.ihour=0
mdate.imin=0
mdate.secs=0.0d0

C Initialize UNILIB library

CALL UT990 (kunit, kinit, ifail)

C modified values of several parameters in UNILIB common block
xbmin=0.00000001
kum533=-1
xrmin=0.1
xbmax=100000000.
xtmin=cos(6.*deg)
prop \(=0.02\)
step \(x=0.02\)

C set geomagnetic field models (internal)

CALL UM510 (kint, year, lbint, kunit, ifail)
IF(ifail .LT. 0)STOP

C for centered and aligned dipole remove comments
* mint.norder \(=2\)
* mint.label = 'Dipolar magnetic field '
* mint.coef(2,1) \(=\) mint.gmmo * \(1.0 \mathrm{~d}+05\)
* mint.coef(1,2) \(=0.0 \mathrm{~d}+00\)
* mint.coef(2,2) \(=0.0 \mathrm{~d}+00\)
* mint.elong \(=0.0 \mathrm{~d}+00\)
* mint.colat \(=0.0 \mathrm{~d}+00\)

C Julian day

CALL UT540(mdate)

C set geomagnetic field models (external)
CALL UM520 (kext, mdate.amjd, param,
\(+\quad\) lbext, kunit, ifail)
IF(ifail .LT. 0)STOP
return
end
**** computation of the MacIlwain paramewter \(\mathrm{L}^{* * * *}\)
double precision function alcoor(alt,alon,alat)
double precision alt,alon,alat,alpha
double precision fbm,flm,fks,fs,fsm,fbeq
integer*4 nfmb,ifail,noprint,iifail
real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30)
real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl
real*8 fvet,pvet,epsomeg,dltalt
real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3
real*8 epskm,epsrel
real*8 stplst,xclat
integer*4 kum533

INCLUDE 'structure.h'

RECORD/ZDAT/ mdate
RECORD/ZGEO/ mgeod, mpos
RECORD/ZVEC/mb
RECORD /zimf/ mint
RECORD /zsun/ msun
RECORD /zemf/ mext

COMMON/PITCH/alpha
COMMON/FLAG220/iifail
COMMON /UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma
COMMON/UC140/ mint,mext,msum
COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet,
* epsomeg,dltalt

COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel,
* stplst,xclat,kmflg,kum533
nfbm=1
noprint=-1
mgeod.radius=alt
mgeod.colat=90.0d0-alat
mgeod.elong=alon

C for centered and aligned dipole remove comment
* gmagmo=mint.gmmo

CALL UL220(mgeod,alpha,nfbm,fbm,flm,fkm,fsm,fbeq,fs,ifail)
if(ifail.lt.0)then
iifail=ifail
print*,'ifail220 = ',ifail,'long = ',mpos.elong,mpos.colat,mpos.radius
endif
alcoor=flm
return
end

C calculation of the geomagnetic field vector
double precision function afield(al,alo,ala)
implicit double precision (a-z)
double precision al,alo,ala,bpos
real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30)
real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl
real*8 fvet,pvet,epsomeg,dltalt
real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3
real*8 epskm,epsrel
real*8 stplst,xclat
integer*4 kum533
integer*4 ifail

INCLUDE 'structure.h'

COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet,
* epsomeg,dltalt

COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel,
* stplst,xclat,kmflg,kum533

COMMON /UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma
COMMON/UC140/mint,mext,msum
COMMON/BVAL/bpos

RECORD/ZDAT/ mdate
RECORD/ZGEO/ mgeod, mpos
RECORD/ZVEC/ mb
RECORD/zimf/ mint
RECORD /zsun/ msun
RECORD /zemf/ mext
mgeod.radius=al
mgeod.colat=90.0d0-ala
mgeod.elong=alo
*********** evaluate magnetic feild \({ }^{* * * * * * * * * * *}\)
CALL UM530 (mgeod,mb,ifail)
if (ifail.lt.0)then
print*,'ifailUM530 = ',ifail
endif
bpos=mb.dnrm
afield=mb.dnrm
return
end

C this function reduces the alcoor function that depends on
C three variables into a function of only one variable, the altitude
double precision function alcalt(alti)
double precision alti
double precision fixlon,fixlat,fixalt
double precision fltarget,btarget,alpha
COMMON/FIXED/fixlon,fixlat,fixalt
COMMON/BLCOR/fltarget,btarget
alcalt=(alcoor(alti,fixlon,fixlat)/fltarget)-1.0d0
return
end

C this function reduces the afield function that depends on
C three variables into a function of only one variable, the altitude
double precision function afalt(alti)
double precision alti
double precision fixlon,fixlat,fixalt
double precision fltarget,btarget,alpha
COMMON/FIXED/fixlon,fixlat,fixalt
COMMON/BLCOR/fltarget,btarget
afalt=(afield(alti,fixlon,fixlat)/btarget)-1.0d0
return
end

C This function allows to find the zero of an other function
C
double precision function fzero(gfun,xmin,xmax,ep)
double precision function gfun
double precision xmin,xmax,ep,ecart,xup,xlow,xmean
integer max,nbr
xlow \(=\) xmin
xup \(=x m a x\)
\(\max =1000\)
nbr \(=0\)
ecart \(=\) dabs(xup-xlow)
do while ((ecart.gt.ep) .and. (nbr .lt. max))
\[
\mathrm{nbr}=\mathrm{nbr}+1
\]
xmean \(=(x u p+x l o w) / 2\).
var \(=\) gfun(xlow)*gfun(xmean)
if (var .lt. 0) then
xup \(=\) xmean
else
xlow \(=\) xmean
endif
ecart \(=\) dabs(xup-xlow)
* print*,xlow,xmean,xup,gfun(xlow),gfun(xmean)
end do
fzero = xmean
return
end

C This function allows to find the zero of an other function
C It is exactely the same function as the previous fzero one
C It's utility remains in the fact that fortran is not a redundant
c language
double precision function gzero(gfun,xmin,xmax,ep)
double precision function gfun
double precision xmin,xmax,ep,ecart,xup,xlow,xmean
integer max,nbr
xlow \(=\) xmin
xup = xmax
\(\max =1000\)
nbr \(=0\)
ecart = dabs(xup-xlow)
do while ((ecart.gt.ep) .and. (nbr .lt. max))
\[
n b r=n b r+1
\]
xmean \(=(x u p+x l o w) / 2\).
var \(=\) gfun(xlow)*gfun(xmean)
if (var .lt. 0) then
xup = xmean
else
xlow \(=\) xmean
endif
ecart \(=\) dabs(xup-xlow)
* print*,xlow,xmean,xup,gfun(xlow),gfun(xmean)
end do
gzero = xmean
return
end

C This function searches after the location where the computed B
\(C\) is equal to the \(B\) target given in the introduction part.
function dist(flat)
implicit double precision (a-z)
integer*4 nfmb,ifail,noprint,iifail
double precision fbm,flm,fks,fs,fsm,fbeq
INCLUDE 'structure.h'
COMMON/BLCOR/fltarget,btarget
COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax
COMMON/FIXED/fixlon,fixlat,fixalt
COMMON/ALTI/alt1

RECORD/ZGEO/ mgeod, mpos
COMMON/FLAG220/iifail
external alcalt
external afalt
eps \(=0.001\)
alpha=90.
pi=4.*atan(1.)
fixlat \(=\) flat

C alt1 is the altitude where \(B=B\) target
alt1 \(=\) fzero(afalt,faltmin,faltmax,eps)
C
C
C Compute the L value with the altitude where \(\mathrm{B}=\) Btarget
bb = alcoor(alt1,fixlon,flat)

C check if computed value of \(L\) matches Ltarget
dist=bb/fltarget-1.0d0
return
end

C At a given longitude, this function finds the latitude mirror point by
C searching the zero of the function dist(latitue)
c between two latitudes (-65 and 40 degrees)
function platmir(flon)
implicit double precision (a-z)
integer*4 nfmb,ifail,noprint,iifail
double precision fbm,flm,fks,fs,fsm,fbeq
INCLUDE 'structure.h'
COMMON/BLCOR/fltarget,btarget
COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax
COMMON/FIXED/fixlon,fixlat,fixalt
RECORD/ZGEO/ mgeod, mpos
COMMON/FLAG220/iifail
COMMON/ALTI/alt1
external dist
eps \(=0.001\)
alpha=90.
pi=4.*atan(1.)

> fixlon = flon
\(\operatorname{lmin}=-65\).
\(\operatorname{lmax}=40\).
platmir = gzero(dist,lmin,lmax,eps)
return
end
\(* *\)
C At a given longitude, this function finds the altitude mirror point by
C searching the zero of the function dist(latitue)
c between two latitudes (-65 and 40 degrees)
function paltmir(flon)
implicit double precision (a-z)
integer*4 nfmb,ifail,noprint,iifail
double precision fbm,flm,fks,fs,fsm,fbeq
INCLUDE 'structure.h'
COMMON/BLCOR/fltarget,btarget
COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax
COMMON/FIXED/fixlon,fixlat,fixalt
RECORD/ZGEO/ mgeod, mpos
COMMON/FLAG220/iifail
COMMON/ALTI/alt1
external dist
eps \(=0.001\)
alpha=90.
\(\mathrm{pi}=4 . * \operatorname{atan}(1\).
fixlon \(=\) flon
\(\operatorname{lmin}=-65\).
\(\operatorname{lmax}=40\).
p = gzero(dist,lmin,lmax,eps)
paltmir=alt1
return
end

C Brent's method see part 10.2 Numerical recipes
double precision function brent(ax,bx,cx,paltmir,tol,xmin)
integer imax
real*8 ax,bx,cx,paltmir,tol,xmin,cgold,eps
external paltmir
parameter (imax=100,cgold=.3819660,eps=1.0e-2)
integer iter
```

    real*8 a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
    common/minimum/x
    a=min(ax,cx)
    b=max(ax,cx)
    v=bx
    w=v
    x=v
    e=0.
    fx=paltmir(x)
    fv=fx
    fw=fx
    do iter=1,imax
        xm=0.5*(a+b)
        tol1=tol*abs(x)+eps
        tol2=2.*tol1
        if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3
        if (abs(e).gt.tol1) then
        r=(x-w)*(fx-fv)
        q=(x-v)*(fx-fw)
        p=(x-v)*q-(x-w)*r
        q=2.*(q-r)
        if(q.gt.0.) p=-p
        q=abs(q)
        etemp=e
        e=d
        if(abs(p).ge.abs(.5*q*etemp).or.p.le.q*(a-x)
    * .or.p.ge.q*(b-x)) goto 1
        d=p/q
        u=x+d
        if(u-a.lt.tol2.or.b-u.lt.tol2) d=sign(tol1,xm-x)
        goto 2
    endif
    1 if (x.ge.xm)then
e=a-x
else
e=b-x
endif
d=cgold*e
if(abs(d).ge.tol1) then
u=x+d
else
u=x+sign(tol1,d)
endif
fu=paltmir(u)
if(fu.le.fx)then

```
```

            if(u.ge.x)then
                a=x
            else
                b=x
            endif
            v=w
            fv=fw
            w=x
            fw=fx
            x=u
            fx=fu
    else
        if(u.lt.x)then
            a=u
        else
            b=u
        endif
        if(fu.le.fw.or.w.eq.x)then
            v=w
            fv=fw
            w=u
            fw=fu
        else if(fu.le.fv.or.v.eq.x.or.v.eq.w)then
            v=u
            fv=fu
        endif
        endif
    enddo
    xmin=x
brent=fx
return
end

```
```


[^0]:    double precision bopti,altopti,latopti,lonopti,newdlopt,integropti
    double precision aintegr(3100000), atrajet(3100000),b(3100000)
    double precision $\operatorname{var}(3100000)$,inte(3100000)
    double precision newalt,newlat,newlon,newdl
    double precision alt,ala,alo
    double precision bmir, integr
    double precision totlong
    double precision dlf
    integer flag,modf,okstep,dir
    integer i,dim

