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Preface 

 
The aim of this study is to validate and determine the limitations of some of the basic 

subroutines forming the UNILIB (version 2.03) software tool.  UNILIB was developed at 
the Belgian Institute for Space Aeronomy (BIRA-IASB), by M. Kruglanski, under the 
TREND-3 project.  This project was suported by ESA (contract No. 10725/94/NL/JG).  
The Technical Project Manager was E. Daly, ESTEC/TOS-EMA, Noordwijck.     

 
The UNILIB package is a basic software toolkit for Radiation Belt modelling and 

development.  It is currently used in the magnetospheric modelling community.  It is a 
public and user friendly software, compiled for most computer operating systems, and 
accessed freely via the Internet at http://www.magnet.oma.be/home/unilib/home.html.   

 
The calculation of B, the magnetic field intensity at the location of a satellite, using the 
UNILIB software, for a variety of geomagnetic field models (internal IGRF as well as 
external magnetospheric models), was validated by comparing with equivalent data 
computed using software available at various data centers in the World.   
 
Similar comparisons were performed for the calculation of I, the second adiabatic 
invariant, and the associated L-parameter introduced by McIlwain [8].  This benchmark 
study led us to quantify the relative error and limitations inherent for the relevant 
subroutines.  Improvements to these subroutines, easily implemented in a future version 
of UNILIB, were detailed.   
 
Besides the frequently calculated values of B and L, McIlwain’s classical coordinates of a 
drift shell, the accuracy and CPU time of the UNILIB algorithm to calculate the 
minimum altitude hmin of a drift shell was examined.  The calculation of this minimum 
altitude was performed using UNILIB drift shell tracing routines [either UD315 (search 
the mirror point of lowest altitude) or UD317 (trace a magnetic drift shell [new])] for 
different geomagnetic models (for the ideal case of a centered dipole an analytical 
expression is available while for the internal IGRF model an alternative method of 
evaluating hmin was devised).  This benchmark study led us to propose a slight 
improvement to the UNILIB package so that hmin is calculated with an error less than 1 
km (for all possible (B, L) drift shells).  This improvement, at the expense of a somewhat 
increased CPU time, could, again, be easily implemented in a future version of UNILIB.   
 
Some of the UNILIB subroutines (version 2.03) were used in building the LMDB 
database of LIULIN dose and flux measurements collected on board the MIR station.  
The calculations of B, I, L and hmin in the database will be recalculated using the 
improved versions of the subroutines.    
 

J Lemaire, August 2000 
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Abstract 
 
This report validates the UNILIB library (version 2.03) as a reliable and accurate 

method for the computation of geomagnetic quantities, specifically, the geomagnetic field 
strength B, the adiabatic invariant I, McIlwain’s magnetic shell parameter L and the 
altitude of the lowest mirror point hmin.  In addition, besides some other miscellaneous 
quantities, such as the modified Julian Day, it is shown that the library accurately 
implements all commonly used coordinate transformations.  The library was validated 
against NASA’s library GEOPACK (NASA’s equivalent of UNILIB), the NSSDC 
program BILCAL, and against results from specially written Fortran programs, for the 
simple centered and aligned dipole model, the more realistic IGRF model and 
Tsyganenko’s external field model.  It is shown that by increasing the number of steps 
used to trace a field line the accuracy of I, L and hmin can be improved beyond the already 
excellent accuracy, though at the expense of computation time.  A recommendation is 
proposed that an input parameter is introduced within UNILIB allowing the user to 
choose the relative accuracy that a field line is traced and hmin is calculated.   
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1. Introduction 
 
The UNILIB library [1] was developed by the Belgian Institute for Space Aeronomy 

as a useful tool for the TREND project (Trapped Radiation ENvironment Development).  
The purpose of TREND was to improve the radiation environment models and software 
used to predict the radiation experienced by spacecraft and satellites as they orbit the 
Earth. 

 
The library consists of FORTRAN subroutines which enable computation of the 

geomagnetic field strength, to evaluate averaged quantities along a drift trajectory and to 
trace magnetic field lines and drift shells.  As well as the widely used (BBm, L) coordinates, 
the library enables evaluation of parameters such as the magnetic field intensity, the 
McIlwain parameter L, the third adibatic invariant I, the altitude of the lowest mirror 
point hmin, etc.  The aim of this report is to validate the UNILIB library (version 2.03) 
against the ‘benchmark’ NASA library GEOPACK [2] (GEOPACK is a Fortran library 
supplying subroutines for the calculation of geomagnetic quantities), the NSSDC 
program BILCAL [3] (BILCAL is a software package calculating geomagnetic field 
strength and L for the IGRF (International Geomagnetic Reference Field) model), as well 
as against specially written Fortran programs.  Much of the validation involves the 
‘simple’ centered and aligned dipole model (referred to as the centered dipole model) of 
the Earth’s internal field in which many of the geomagnetic quantities under investigation 
can be easily evaluated.  UNILIB’s implementation of the more realistic IGRF internal 
field model or Tsyganenko’s external field model is then validated.        

  
The UNILIB library consists of Fortran subroutines which are classified into three 

groups: (1) main subroutines, (2) internal subroutines and (3) miscellaneous subroutines.  
The main subroutines are ‘top-level’ subroutines which compute the geomagnetic 
quantities  mentioned above.  The internal subroutines are subroutines called by other 
subroutines of the library.  The miscellaneous subroutines, though used by the main 
subroutines, may also be used directly for general calculations such as coordinates, 
coordinate transformation, modifed Julian Day, etc. 

 
 In the library, geographic positions are expressed, as often as possible, in Geocentric 

Equatorial (GEO) coordinates.  However, the library allows conversion to other 
coordinate systems such as Geocentric Equatorial Inertial (GEI), Geomagnetic (MAG), 
etc.  In chapter 2, the different coordinate systems allowed by UNILIB are discussed and 
the subroutines that implement conversion from one coordinate system to another are 
validated by comparing geographic positions computed using UNILIB with equivalent 
positions computed using GEOPACK subroutines.   Results confirming the accurate 
evaluation of modified Julian Day are also presented. 

 
In chapter 3, UNILIB is applied to evaluate the geomagnetic field vector B.  UNILIB 

results were in good agreement with results from ‘exact’ mathematical formulas for the 

 5



centered dipole model.  For the IGRF model, field values computed using UNILIB were 
in good agreement with equivalent results computed using both GEOPACK and 
BILCAL.  Finally, for Tsyganenko’s external field model, field values computed using 
UNILIB were in good agreement with equivalent results computed using GEOPACK. 

 
In chapter 4, UNILIB is applied to evaluate the integral invariant I.  UNILIB results 

for the centered dipole model were in good agreement, a relative error of approximately 
10-5 at low latitudes to 10-6 at high latitudes, with ‘exact’ solutions.   It is shown that the 
‘Runge-Kutta adaptive’ method accurately solves the required ordinary differential 
equations needed to trace the field line and produce an accurate estimation of I.  UNILIB 
results for the IGRF model were in good agreement, a relative error of 10-3 at low 
latitudes to 10-4 at high latitudes, with results computed using this method.  This is better 
than the accuracy generally needed by modellers to determine the value of I.     
 

 In chapter 5, UNILIB is applied to evaluate McIlwain’s magnetic shell L parameter.  
UNILIB results for the centered dipole model were in good agreement, a relative error of 
10-4 at low latitudes to 10-5 at high latitudes, with ‘exact’ solutions.  For the IGRF model, 
UNILIB results were in good agreement, a relative error of 10-4, with values computed 
from I computed using the ‘Runge-Kutta adaptive’ method of chapter 4 (L is computed 
from I by applying the Hilton function).  Again this is better than the accuracy needed by 
modellers to calculate L.  Results confirming the accurate evaluation of the arc length l of 
a magnetic field line between two mirror points are also presented.                                  
 

It is shown that the accuracy of both I and L returned by UNILIB increases, at the 
expense of computation time, if the number of steps used to trace the field line is 
increased.  This is achieved by modifying the parameters prop and stepx within common 
block UC190 (control parameters, set 1).  [prop (default value 0.2) determines the 
number of steps used to trace a field line and stepx (default value 0.075) is the maximum 
step size.]  Using modified values prop= 0.02 and stepx= 0.02 the relative error in 
calculating I for the IGRF model was between 10-4 and 10-5, while the relative error in 
calculating L for the IGRF model was between 10-6 and 10-7.  It is recommended that an 
input parameter is introduced to the subroutines that allows the user to specify either the 
accuracy of I or L required, or the accuracy with which the field line is traced. 

 
In chapter 6, UNILIB is applied, for a given magnetic field and drift shell, to evaluate 

hmin (the lowest altitude mirror point).  For the centered dipole model, the maximum 
disagreement between UNILIB and ‘exact’ solutions was 2 km.  For the IGRF model, the 
maximum disagreement between UNILIB and comparison values was 2.5 km (hmin was 
evaluated by locating the intercept of the line of constant B with the line of constant L).  
Note that the maximum disagreement was for points far from the Earth’s surface, for 
points close to the Earth’s surface the disagreement, for both models, was typically less 
than 0.5 km.  It is shown that the maximum disagreement reduces to less than 0.3 km 
using modified values prop= 0.02 and stepx= 0.02.  It is recommended that a parameter 
be introduced allowing the user to specify the accuracy of hmin .   
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2. Transformation between coordinate systems 
 
Within UNILIB, geographic positions are expressed, as often as possible, in the 

Geographic (GEO) coordinate system, i.e. geocentric coordinates of longitude, colatitude 
and radial  distance from the center of the Earth.  However, UNILIB contains subroutines 
which allow conversion between geocentric and geodetic coordinates (positions are given 
with respect to the Earth’s geoid) [subroutines UM535 (geocentric to geodentic 
transformation) and UM536 (geodetic to geocentric transformation)] and between GEO 
and Geocentric Equatorial Inertial (GEI), Geomagnetic (MAG), Solar Magnetic (SM) and 
Geocentric Solar Magnetospheric (GSM) coordinate systems [4] [subroutines UT550 
(select a coordinate transformation) and UT555 (coordinate conversion)].  [UT550 
initializes the coordinate system and UT555 applies the computed transformation.]  

 
This chapter will compare the results of  transforming geographic positions (points on 

the Earth’s surface at 0° longitude and varying latitude λ) from GEO to GSM, GEO to 
MAG, GSM to GSE, MAG to SM and GEO to GEI using UNILIB subroutines with the 
equivalent transformations using GEOPACK subroutines.   

 
As GEOPACK performs coordinate transformations in cartesian coordinates (x, y, z), 

while UNILIB uses spherical coordinates (ρ, θ, φ), UNILIB results were converted to 
cartesian coordinates to allow comparison (section 2.1). 
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2.1. Transformation from spherical to cartesian coordinates 
 
Table 2.1 compares geographic positions (on the Earth’s surface at 0° longitude), in 

cartesian coordinates, computed using UNILIB and GEOPACK subroutines.  UNILIB’s 
subroutine UT541 (convert spherical to cartesian coordinates) transforms the geographic 
positions from spherical to cartesian coordinates  The two sets of data are in excellent 
agreement, as indicated by an average difference in the x coordinates of 20.5 cm and in 
the z coordinates of 17.5 cm.  

 
 

λ / ° x / km    y / km z / km 

      UNILIB  GEOPACK      UNILIB  GEOPACK  UNILIB  GEOPACK 
-70 2187.93573 2187.93555 0.00000 0.00000 -5971.06087 -5971.06104 
-60 3197.11636 3197.11663 0.00000 0.00000 -5500.49628 -5500.49623 
-50 4107.87915 4107.87968 0.00000 0.00000 -4862.80588 -4862.80569 
-40 4892.72545 4892.72531 0.00000 0.00000 -4077.99963 -4077.99995 
-30 5528.27671 5528.27650 0.00000 0.00000 -3170.38461 -3170.38482 
-20 5995.85808 5995.85801 0.00000 0.00000 -2167.70420 -2167.70404 
-10 6281.89550 6281.89558 0.00000 0.00000 -1100.25230 -1100.25260 
0 6378.16000 6378.16016 0.00000 0.00000 0.00000 0.00000 
10 6281.89550 6281.89558 0.00000 0.00000 1100.25230 1100.25260 
20 5995.85808 5995.85801 0.00000 0.00000 2167.70420 2167.70404 
30 5528.27671 5528.27672 0.00000 0.00000 3170.38461 3170.38445 
40 4892.72545 4892.72558 0.00000 0.00000 4077.99963 4077.99963 
50 4107.87915 4107.87936 0.00000 0.00000 4862.80588 4862.80596 
60 3197.11636 3197.11644 0.00000 0.00000 5500.49628 5500.49634 
70 2187.93573 2187.93575 0.00000 0.00000 5971.06087 5971.06097 

 

Table 2.1 Transformation from cartesian to spherical coordinates of points located at the 
Earth’s surface, at different geographic latitudes, along the meriodian 0° longitude, and 
epoch 1985. 

 
The UNILIB subroutine UT546 (convert cartesian coordinates to spherical 

coordinates) converts from cartesian to spherical coordinates.  This was simply checked 
by transforming the data of Table 2.1 back into spherical coordinates where it was seen to 
match the initial UNILIB spherical coordinate data.  
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2.2. Transformation from GEO to GSM coordinates 
 
Table 2.2 shows results of transforming from GEO to GSM coordinate system.  

UNILIB data is computed using subroutines UT550 and UT555 and is compared with 
equivalent GEOPACK data.  Comparing the two sets of data, the average difference in 
the x coordinates is approximately 10 m, y coordinates 469 m and z coordinates 114 m.  
The disagreement between UNILIB and GEOPACK data is greater at low latitudes than 
high latitudes.   

 
 

λ / ° x / km y / km z / km 
 UNILIB GEOPACK UNILIB GEOPACK UNILIB GEOPACK 

-70 321.975 321.991 1315.928 1315.677 -6213.316 -6213.369 
-60 -790.758 -790.743 1322.944 1322.595 -6172.644 -6172.721 
-50 -1878.288 -1878.276 1289.644 1289.208 -5943.939 -5944.037 
-40 -2907.485 -2907.475 1217.174 1216.665 -5534.786 -5534.904 
-30 -3847.329 -3847.321 1107.866 1107.299 -4958.213 -4958.346 
-20 -4669.782 -4669.777 965.132 964.524 -4232.129 -4232.273 
-10 -5350.505 -5350.503 793.337 792.706 -3378.681 -3378.832 
0 -5869.420 -5869.422 597.656 597.022 -2423.559 -2423.712 
10 -6211.164 -6211.168 383.935 383.317 -1395.280 -1395.431 
20 -6365.442 -6365.449 158.533 157.950 -324.457 -324.601 
30 -6327.323 -6327.333 -71.828 -72.360 756.969 756.835 
40 -6097.451 -6097.463 -300.243 -300.706 1816.533 1816.415 
50 -5682.159 -5682.173 -519.798 -520.179 2822.133 2822.034 
60 -5093.453 -5093.470 -723.782 -724.068 3742.978 3742.901 
70 -4348.815 -4348.832 -905.894 -906.077 4550.582 4550.529 

   

Table 2.2 Transformation from GEO to GSM coordinates of points located at the Earth’s 
surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 
1985. 
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2.3. Transformation from GEO to MAG coordinates 
 
Table 2.3 shows the results of transforming from GEO to MAG coordinate system.  

The UNILIB and GEOPACK data are in excellent agreement.  The average difference in 
the x coordinates is 9 m and in the y and z coordinates 4 m.   

 
 

λ / °  x / km y / km z / km 
 UNILIB GEOPACK UNILIB GEOPACK UNILIB GEOPACK 

-70 1844.816 1844.816 2067.435 2067.434 -5723.897 -5723.897 
-60 2079.018 2079.004 3021.035 3021.037 -5198.851 -5198.854 
-50 2249.641 2249.626 3881.637 3881.640 -4515.924 -4515.928 
-40 2351.677 2351.663 4623.258 4623.260 -3696.478 -3696.483 
-30 2382.267 2382.253 5223.806 5223.810 -2765.835 -2765.840 
-20 2340.716 2340.702 5665.635 5665.639 -1752.394 -1752.401 
-10 2228.457 2228.444 5935.919 5935.923 -686.742 -686.748 
0 2048.961 2048.950 6026.882 6026.886 399.227 399.222 
10 1807.616 1807.607 5935.919 5935.923 1473.146 1473.141 
20 1511.581 1511.573 5665.635 5665.640 2502.991 2502.986 
30 1169.612 1169.606 5223.806 5223.810 3457.896 3457.892 
40 791.864 791.861 4623.258 4623.261 4308.977 4308.974 
50 389.643 389.642 3881.637 3881.640 5030.172 5030.169 
60 -24.893 -24.891 3021.035 3021.037 5599.084 5599.083 
70 -439.083 -439.079 2067.435 2067.436 5997.796 5997.795 

 

Table 2.3 Transformation from GEO to MAG coordinates of points located at the Earth’s 
surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 
1985. 
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2.4. Transformation from GSM to GSE coordinates  
 
Table 2.4 shows the results of transforming from GSM to GSE coordinate system.   As 

UNILIB works in the GEO coordinate system, a GSM to GSE transformation requires 
subroutine UT555 to preform an initial transformation from GEO to GSM.  Comparing 
UNILIB with GEOPACK data, the x and z coordinates are in excellent agreement with 
average differences of 10 m and 17 m respectively.  A relatively large disagreement of 
399 m is seen between the y coordinate data (this is expected as the results of Table 2.2 
show that the initial transformation of GEO to GSM has an average difference in the y 
coordinates of 469 m, limiting the accuracy of the GSM to GSE transformation).   

 
 

λ / ° x / km y / km z / km 

 UNILIB GEOPACK UNILIB GEOPACK UNILIB GEOPACK 
-70 321.975 321.993 -468.862 -468.803 -6333.809 -6333.812 
-60 -790.758 -790.743 -450.783 -450.826 -6296.706 -6296.705 
-50 -1878.288 -1878.275 -418.987 -419.132 -6067.787 -6067.781 
-40 -2907.486 -2907.474 -374.490 -374.731 -5654.656 -5654.645 
-30 -3847.329 -3847.321 -318.683 -319.013 -5070.472 -5070.458 
-20 -4669.782 -4669.777 -253.286 -253.694 -4333.387 -4333.369 
-10 -5350.505 -5350.503 -180.282 -180.757 -3465.886 -3465.864 
0 -5869.421 -5869.422 -101.864 -102.391 -2494.084 -2494.060 
10 -6211.164 -6211.168 -20.370 -20.934 -1446.996 -1446.971 
20 -6365.442 -6365.450 61.770 61.187 -355.794 -355.768 
30 -6327.324 -6327.334 142.103 141.518 746.973 746.999 
40 -6097.451 -6097.463 218.209 217.641 1828.202 1828.228 
50 -5682.159 -5682.173 287.776 287.241 2855.138 2855.163 
60 -5093.454 -5093.470 348.663 348.178 3796.338 3796.360 
70 -4348.815 -4348.832 398.976 398.556 4622.690 4622.710 

 

Table 2.4 Transformation from GSM to GSE coordinates of points located at the Earth’s 
surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 
1985. 
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2.5. Transformation from MAG to SM coordinates  
 
Table 2.5 shows the results of transforming from MAG to SM coordinate system, 

again requiring UNILIB to preform an initial transformation from GEO to MAG.  As 
with the GSM to GSE transformation, the x and z coordinates are in very good agreement 
with average differences of  76 and 4 m respectively, while the y coordinates disagree 
quite appreciably with an average disagreement of 467 m (the disagreement being greater 
at low latitudes than high latitudes).    

 
 

λ / ° x / km y / km z  / km 

 UNILIB GEOPACK UNILIB GEOPACK UNILIB GEOPACK 
-70 -2438.435 -2438.563 1315.928 1315.689 -5723.897 -5723.897 
-60 -3420.349 -3420.477 1322.944 1322.595 -5198.851 -5198.854 
-50 -4297.070 -4297.195 1289.644 1289.208 -4515.924 -4515.928 
-40 -5042.161 -5042.279 1217.174 1216.665 -3696.478 -3696.483 
-30 -5633.469 -5633.577 1107.866 1107.299 -2765.835 -2765.840 
-20 -6053.668 -6053.762 965.133 964.524 -1752.394 -1752.401 
-10 -6290.610 -6290.688 793.337 792.706 -686.742 -686.748 
0 -6337.535 -6337.594 597.656 597.022 399.227 399.222 
10 -6193.158 -6193.197 383.935 383.317 1473.146 1473.141 
20 -5861.669 -5861.687 158.533 157.950 2502.991 2502.986 
30 -5352.661 -5352.656 -71.828 -72.360 3457.896 3457.892 
40 -4680.963 -4680.935 -300.243 -300.706 4308.977 4308.974 
50 -3866.360 -3866.311 -519.798 -520.179 5030.172 5030.169 
60 -2933.157 -2933.088 -723.782 -724.068 5599.084 5599.083 
70 -1909.565 -1909.478 -905.894 -906.077 5997.796 5997.795 

 

Table 2.5 Transformation from MAG to SM coordinates of points located at the Earth’s 
surface, at different geographic latitudes, along the meriodian 0° longitude, and epoch 
1985.  
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2.6. Transformation from GEO to GEI coordinates  
 
Since the GEO and GEI coordinate systems have their z-axis in common [4] (parallel 

to the Earth’s rotation axis), the transformation from GEO to GEI is easily implemented 
by UNILIB as it simply requires a rotation about the z-axis.    

 

2.7. Modified Julian Day 
 
Astronomers who need to deal with events separated by large time spans use ‘Julian 

Day’ to refer to time.  The Julian Day is the number of days that has elapsed since noon, 
1st of January, 4713 BC.  The modified Julian Day (MDJ), as defined by Scaliger, began 
at midnight, November 17, 1858.  A second version of MDJ, as defined by Klinkard, 
began at midday, 1st of January, 1950.  The difference between the starting times of the 
two versions of MJD is 33282.5 days.   

 
UNILIB subroutine UT540 (compute modified Julian Day from date) converts an 

‘actual’ date into MJD (Klinkard version).  Accurate evaluation of MJD within UNILIB 
is of great importance, as it is required, for example, to evaluate the geomagnetic field, 
for coordinate systems such as SM or GSE which are dependent on the suns position.     

 
Table 2.6 shows results of converting two actual dates (column 1) into MJD 

(Klinkard) using subroutine UT540 (column 2).  The results of converting the dates to 
MJD (Scaliger) are shown in column 3.  For each of the dates the difference between 
MJD (Klinkard) and MJD (Scalinger) is, as expected, 33282.5 days (column 4), 
indicating that subroutine UT540 accurately calculates modified Julian Day.   

 
Subroutine UT545 (compute date from modified Julian Day) performs the reverse 

transformation from MJD (Klinkard) into the date.  Applying this transformation to the 
column 2 data returned the initial dates of column 1. 

 
 

Date MDJ (Klinkard) MDJ (Scaliger) Difference 
1/1/1985 12784 46066.5 33282.5 
5/1/1999 18017 51299.5 33282.5 

 

Table 2.6 Calculation of the Klinkard and Scalinger versions of modified Julian Day 
(MJD) from a given date. 
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2.8. Recommendations 
 
UNILIB subroutines UT550 (select a coordinate transformation) and UT555 

(coordinate conversion) implement the transformation from one coordinate system to 
another.  Using these subroutines, the transformations GEO to MAG and GEO to GEI (a 
simple rotation about the z-axis) are accurately implemented.  For transformations 
involving GEO to GSM, GSM to GSE and MAG to SM, the final y coordinate positions 
disagree by an average of 400 to 450 m with equivalent GEOPACK data.  Additionally, 
the disagreement is greater at low latitudes than at high latitudes.  The x and z positions 
were much more reliably found, typically disagreeing by tens of meters.    

 
A possible recommendation is that the relative inaccuracy of the y coordinate positions 

involving these transformations is examined further.  This could be done by finding a 
second method with which to compare UNILIB results and so determine which of either 
GEOPACK or UNILIB is the ‘most’ correct.       
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3. Evaluation of the geomagnetic field vector B 
 
The Earth’s internal magnetic field (geomagnetic field) results primarily from 

convective motion of the core and is approximately dipole configuration.  The effective 
dipole is centered around 500 km from the center of the Earth toward the western Pacific 
and inclined at an angle of about 11.2° from the axis of rotation.  The Earth’s external 
field comes from currents flowing above the surface of the Earth and is much less stable 
than the internal field [5].   

 
In the UNILIB library, the magnetic field model of the Earth is defined by selection of 

an internal field model using subroutine UM510 (select a geomagnetic field model) and 
an external field model using subroutine UM520 (select an external magnetic field 
model).  These subroutines modify the contents of common block UC140 (magnetic field 
description) which is used by subroutine UM530 (evaluate the magnetic field vector) to 
evaluate the magnetic field at any geographic location.  The most commonly used 
geomagnetic field model is the IGRF model, while for the external field it is 
Tsyganenko’s model [6].  (In the UNILIB library (version 2.03), see Example 1 (page 79) 
for a sample program for evaluation of the magnetic field vector and frequently asked 
questions number T.03 (page 38) on how to customize the magnetic field model.)    

 
The IGRF model is the empirical representation of the Earth’s magnetic field.  The 

model employs a spherical harmonics expansion of the scalar potential VM giving  
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where r is the distance from the center of the Earth, θ and φ are the geographic 

colatitude and east longitude respectively, Re is the Earth radius (6371.2 km), PP

m
n (cos θ) 

are normalized associated Legendre functions and  gn
m  and hn

m gaussian coefficients.   As 
both the center of the dipole and its inclination changes every year,  the IGRF model 
consists of coefficient sets for the epochs 1945 to 1995 in steps of 5 years.   

 

3.1. Centered dipole model 
 
Within a few Earth radii the magnetic field of the Earth is similar to the field found if 

the Earth was modelled as a centered and aligned dipole (the dipole is aligned with the 
Earth’s axis of rotation).  The fields from this dipole may be represented by exact 
analytical formulas [7].   
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The strength of a dipole magnetic field is given by  
 

λλ 2
3 sin31),( +=

r
MrB

                                                           (3.2) 
 
where λ is the latitude, r the distance from the center of the Earth and M the Earth’s 

dipole moment.   
 
The field components, in spherical coordinates, are given as    
  

λsin23r
MBr −=

                                                                     (3.3) 
  

λθ cos3r
MB −=

                                                                        (3.4)  
 

                                                         and 
 

0=φB
                                                                                 (3.5) 

 
The field B along a field line can be shown to be  
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                                                      (3.6)      

 

where ro is the radius at the equator.  
 
Through subroutine UM510, UNILIB allows the centered dipole model (obtained 

from the IGRF model by truncation to the 2nd order of the gaussian coefficients) to be 
selected.  Table 3.1 shows modulus values of B computed using UNILIB subroutine 
UM530 and modulus values computed using equation (3.6) [labelled UNILIB and  Exact 
respectively] at positions of radius 1 Re (on the Earth’s surface) and 3 Re and for the year 
1985 (the magnetic field is year dependent with M= 0.3043476883 Gauss for 1985).  The 
UNILIB field values, for both 1 Re and 3 Re, match the exact field values to the 14 digits 
shown.  [Only data for latitudes 0° to 70° are shown as the fields are symmetrical about 
the equator.] 

  

 16



 
λ / ° 1 Re     | B | / nT  3 Re     | B | / nT 

 UNILIB Exact UNILIB Exact 
0 30434.7688343447 30434.7688343447 1127.2136605313 1127.2136605313 
10 31781.5511649967 31781.5511649967 1177.0944875925 1177.0944875925 
20 35374.2276695716 35374.2276695716 1310.1565803545 1310.1565803545 
30 40261.4147727076 40261.4147727076 1491.1635101003 1491.1635101003 
40 45545.7890066098 45545.7890066098 1686.8810743189 1686.8810743189 
50 50566.3610888245 50566.3610888245 1872.8281884750 1872.8281884750 
60 54867.0597945616 54867.0597945616 2032.1133257245 2032.1133257245 
70 58138.1095907092 58138.1095907092 2153.2633181744 2153.2633181744 

 

Table 3.1 Comparison of UNILIB and ‘exact’ modulus values of magnetic field, 
computed using the centered dipole model, at points located at different geographic 
latitudes, at a radius of 1 and 3 Re, and epoch 1985.     

 
Table 3.2 shows BBr field values (for 1985) computed using subroutine UM530 and 

equation (3.3) [again labelled UNILIB and Exact respectively].  Again, the UNILIB field 
values, at both 1 Re and 3 Re, match the exact field values to the number of digits shown. 

  
 
λ / ° 1 Re    BBr / nT 3 Re     BBr / nT 

 UNILIB Exact UNILIB Exact 
0 0.000000000 0.000000000 0.0000000000 0.000000000 
10 -10569.8842915960 -10569.8842915960 -391.477195985 -391.477195985 
20 -20818.6079976120 -20818.6079976120 -771.059555467 -771.059555467 
30 -30434.7688343450 -30434.7688343450 -1127.213660531 -1127.213660531 
40 -39126.1846207820 -39126.1846207820 -1449.117948918 -1449.117948918 
50 -46628.7710863210 -46628.7710863210 -1726.991521716 -1726.991521716 
60 -52714.5659376990 -52714.5659376990 -1952.391331026 -1952.391331026 
70 -57198.6553779170 -57198.6553779170 -2118.468717701 -2118.468717701 
 

Table 3.2 Comparison of UNILIB and ‘exact’ BBr field values, computed using the 
centered dipole model, at points located at different geographic latitudes, at a radius of 1 
and 3 Re, and epoch 1985.   
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Table 3.3 shows BBθ field values (for 1985) computed using subroutine UM530 and 
equation (3.4).  Again, both sets of field values match to the number of digits shown. 

 
 
λ / °   1 Re     BBθ / nT 3 Re      BBθ / nT 

 UNILIB Exact UNILIB Exact 
0 -30434.7688343450 -30434.7688343450 -1127.2136605313 -1127.2136605313 
10 -29972.3963091970 -29972.3963091970 -1110.0887521925 -1110.0887521925 
20 -28599.3276889590 -28599.3276889590 -1059.2343588503 -1059.2343588503 
30 -26357.2829688490 -26357.2829688490 -976.1956655129 -976.1956655129 
40 -23314.3855431600 -23314.3855431600 -863.4957608578 -863.4957608578 
50 -19563.0923103910 -19563.0923103910 -724.5589744589 -724.5589744589 
60 -15217.3844171720 -15217.3844171720 -563.6068302656 -563.6068302656 
70 -10409.3039988060 -10409.3039988060 -385.5297777336 -385.5297777336 

 

Table 3.3 Comparison of UNILIB and ‘exact’ BBθ field values, computed using the 
centered dipole model, at points located at different geographic latitudes, at a radius of 1 
and 3 Re, and epoch 1985.   

 
The magnetic field strength of a centered dipole is independent of longitude.  This was 

checked within the UNILIB subroutine by calculating the magnetic field on the Earth’s 
surface, at the equator, for epoch 1985, as a function of longitude.  Table 3.4 shows that 
the field strengths computed by subroutine UM530 are, as expected, independent of 
longitude.  Similar results were found for latitudes of 30° and –30°.   

 
 

Longitude / ° | B | /  nT 

360 30434.7688343447 
280 30434.7688343447 
200 30434.7688343447 
120 30434.7688343447 
80 30434.7688343447 
0 30434.7688343447 

 

Table 3.4 Variation of magnetic field with longitude, computed using UNILIB’s 
implementation of the centered dipole model, at points located at 0° latitude, at a radius 
of 1 Re, and epoch 1985.   
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3.2. IGRF model 
 
A more representative model of the Earth’s internal field is the IGRF model [5].  

Table 3.5 shows geomagnetic field values computed using UNILIB’s implementation of 
the  IGRF model compared with results computed using GEOPACK’s implementation.   
The table shows modulus values and field component values in spherical coordinates, 
calculated at 3 Re, 320° longitude and epoch 1985.  The UNILIB and GEOPACK field 
values either agree to all digits shown or differ by ‘one’ point in the final digit.  [By 
choosing the longitude as 320°, the comparisons were made in the unfavorable region of 
the South Atlantic Anomaly.]   

   
 

λ / °                | B |  / nT Br   /  nT               BBθ  / nT            BBφ  / nT 

 UNILIB GEOPACK UNILIB GEOPACK UNILIB GEOPACK UNILIB GEOPACK 
-80 2032.181 2032.183 1980.517 1980.518 -446.370 -446.370 -89.833 -89.833 
-70 1884.150 1884.150 1787.311 1787.311 -588.421 -588.421 -96.445 -96.445 
-60 1713.688 1713.688 1556.739 1556.74 -708.670 -708.670 -105.242 -105.242 
-50 1532.643 1532.643 1296.742 1296.742 -808.769 -808.769 -115.528 -115.528 
-40 1354.673 1354.673 1012.832 1012.832 -890.692 -890.692 -126.410 -126.410 
-30 1197.399 1197.399 708.462 708.462 -955.560 -955.560 -136.937 -136.937 
-20 1084.553 1084.554 386.158 386.158 -1002.879 -1002.880 -146.224 -146.225 
-10 1042.918 1042.918 48.991 48.991 -1030.390 -1030.390 -153.547 -153.547 
0 1088.328 1088.329 -298.130 -298.130 -1034.640 -1034.640 -158.401 -158.401 
10 1212.177 1212.178 -647.758 -647.758 -1011.940 -1011.940 -160.535 -160.535 
20 1387.833 1387.834 -989.976 -989.976 -959.402 -959.402 -159.936 -159.936 
30 1586.242 1586.242 -1313.179 -1313.177 -875.872 -875.872 -156.774 -156.774 
40 1783.488 1783.489 -1605.270 -1605.269 -762.262 -762.262 -151.332 -151.332 
50 1961.535 1961.535 -1854.909 -1854.908 -621.464 -621.464 -143.941 -143.941 
60 2107.222 2107.222 -2052.453 -2052.453 -457.828 -457.828 -134.970 -134.970 
70 2211.302 2211.301 -2190.391 -2190.393 -276.489 -276.489 -124.852 -124.852 
80 2267.677 2267.678 -2263.290 -2263.290 -82.818 -82.818 -114.128 -114.128 

 

Table 3.5 Comparison of UNILIB and GEOPACK magnetic field values, computed using 
the IGRF model, at points located at different geographic latitudes, at a radius of 3 Re, 
along the meriodian 320° longitude, and epoch 1985. 

 

 
A second comparison can be made by comparing magnetic field strengths computed 

using BILCAL’s [3] implementation of the IGRF model.  Table 3.6 shows field values 
computed using UNILIB and BILCAL, at positions of 1 Re, 320° longitude and for 
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epoch 1985.  The UNILIB and BILCAL field values match to the number of digits 
shown.  [As BILCAL’s field components are in geodetic coordinates, while UNILIB’s 
are in geocentric, results are shown as geodetic field components.] 

 
 

λ / ° | B | / nT  BBr   /  nT               Bθ  / nT            Bφ  / nT 
 UNILIB BILCAL UNILIB BILCAL UNILIB BILCAL UNILIB BILCAL 

-80 49740.3 49740.3 -19209.2 -19209.2 3193.9 3193.9 45770.0 45770.1 
-70 41657.2 41657.2 -20402.9 -20402.9 1682.2 1682.2 36279.7 36279.7 
-60 33902.9 33902.9 -19396.9 -19396.9 -484.2 -484.2 27801.7 27801.7 
-50 28116.0 28116.0 -17462.1 -17462.1 -2716.5 -2716.5 21867.9 21867.9 
-40 25023.6 25023.6 -16420.4 -16420.4 -4656.9 -4656.9 18299.3 18299.3 
-30 23979.5 23979.5 -17168.9 -17168.9 -6289.9 -6289.9 15514.0 15514.0 
-20 24150.9 24150.9 -19507.5 -19507.5 -7764.3 -7764.3 11934.8 11934.8 
-10 25355.7 25355.7 -22776.2 -22776.2 -9036.5 -9036.5 6519.2 6519.2 
0 27790.7 27790.7 -25987.1 -25987.1 -9767.2 -9767.2 -1261.5 -1261.5 
10 31562.1 31562.1 -27927.3 -27927.3 -9684.1 -9684.1 -11065.8 -11065.8 
20 36406.1 36406.1 -27843.0 -27843.0 -8977.3 -8977.3 -21669.8 -21669.8 
30 41758.8 41758.9 -25798.1 -25798.1 -8174.1 -8174.1 -31803.2 -31803.2 
40 46939.8 46939.8 -22157.0 -22157.0 -7628.9 -7628.9 -40672.1 -40672.1 
50 51128.3 51128.3 -17261.3 -17261.3 -7261.5 -7261.5 -47575.4 -47575.4 
60 53628.9 53628.9 -11867.8 -11867.8 -6761.2 -6761.2 -51860.4 -51860.4 
70 54597.7 54597.7 -7173.8 -7173.8 -5849.4 -5849.4 -53807.3 -53807.3 
80 55221.5 55221.5 -3733.5 -3733.5 -4331.6 -4331.6 -54924.6 -54924.6 

 

Table 3.6 Comparison of UNILIB and BILCAL magnetic field values, computed using 
the IGRF model, at points located at different geographic latitudes, at a radius of 1 Re, 
along the meriodian 320° longitude, and epoch 1985. 

 

3.2.1. Computation time 
 

The computer evaluation time of the UNILIB subroutines used to evaluate B field 
values is very rapid.  For the IGRF model, using a Hewlett-Packard Workstation, it took 
1.3 seconds to evaluate 100 B field values.    
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3.3. Tsyganenko’s external magnetic field model 
 

Table 3.7 shows field values, in cartesian coordinates, computed using UNILIB’s 
implementation of  the Tsyganenko (1989c) external field model [6] [subroutine UM520 
(select an external magnetic field model)] compared with results computed using 
GEOPACK’s implementation.  As GEOPACK uses a cartesian Geocentric Solar 
Magnetospheric (GSM) coordinate system, while UNILIB calculates in spherical GEO, 
UNILIB results were transformed into cartesian GSM for comparison [subroutine UT556 
(vector conversion) and UT542 (convert spherical vector components to cartesian 
components)].  Additionally, as UNILIB only allows evaluation of either the internal 
magnetic field or the total magnetic field (i.e. internal + external), the external field was 
computed by subtracting the internal field from the total field.   

 
 

λ / °          | B |  /  nT Bx  /  nT  By  /  nT Bz  /  nT 
 UNILIB GEOPACK UNILIB GEOPACK UNILIB GEOPACK UNILIB GEOPACK

0 43.82007 43.82012 1.33399 1.33576 -8.20702 -8.20681 -43.024 -43.02403 
5 43.92521 43.92484 0.87812 0.87971 -8.22648 -8.22629 -43.13895 -43.13867 
10 43.96019 43.96037 0.43223 0.43345 -8.22381 -8.22365 -43.1819 -43.18214 
15 43.92680 43.92762 0.00774 0.00948 -8.19969 -8.19955 -43.15483 -43.15556 
20 43.82881 43.82873 -0.38307 -0.38113 -8.15553 -8.15542 -43.06155 -43.0616 
25 43.66750 43.66715 -0.73127 -0.72923 -8.09336 -8.09325 -42.90477 -42.90435 
30 43.44738 43.44722 -1.03047 -1.0279 -8.01564 -8.01556 -42.68907 -42.68904 
35 43.17429 43.17440 -1.27369 -1.27301 -7.92516 -7.92509 -42.42159 -42.4217 
40 42.85468 42.85466 -1.46425 -1.46231 -7.82481 -7.82475 -42.10877 -42.10886 
45 42.49443 42.49445 -1.59760 -1.59615 -7.71746 -7.71741 -41.75731 -41.75731 
50 42.10103 42.10044 -1.67770 -1.67638 -7.60586 -7.60581 -41.37428 -41.37376 
55 41.67903 41.67929 -1.70823 -1.70641 -7.49254 -7.49249 -40.96454 -40.96479 
60 41.23735 41.23752 -1.69267 -1.69065 -7.37976 -7.37972 -40.53645 -40.53658 
65 40.78083 40.7813 -1.63527 -1.63423 -7.26950 -7.26946 -40.09443 -40.09487 
70 40.3165 40.31641 -1.54427 -1.54271 -7.16344 -7.16340 -39.64501 -39.64491 
75 39.84765 39.84812 -1.42322 -1.42191 -7.06297 -7.06293 -39.19086 -39.1914 
80 39.38149 39.38113 -1.27955 -1.27769 -6.96919 -6.96915 -38.73866 -38.73851 
 

Table 3.7 Comparison of UNILIB and GEOPACK external magnetic field values, 
computed using the Tsyganenko (1989c) model, at points located at different geographic 
latitudes, at a radius of 1 Re, and along the meriodian 0° longitude.   
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Table 3.7 shows modulus values and field component values, calculated at 1 Re, 0° 
longitude, and using UNILIB’s default parameter values of Kp, Dst, solar wind velocity, 
etc.  Typically, the modulus values agree to the first 4 or 5 digits, values of BBx to 3 digits 
and values of ByB  and BBz to 4 or 5 digits.  The good agreement of the results provides not 
only verification of UNILIB’s implementation of the Tsyganenko (1989c) external field 
model and the calculation of the geomagnetic field but also the implementation of the 
vector component conversion subroutine UT556 (vector conversion).   

 

3.3.1. Computation time 

 

The computer evaluation time for the evaluation of B field values using Tsyganenko’s 
external field model were similar to those for the IGRF model.  Again, using a Hewlett-
Packard Workstation, 100 B field values were evaluated in 1.3 seconds. 

 

3.4. Recommendations 
 
UNILIB’s implementation of the centered dipole model, the IGRF model, 

Tsyganenko´s (1989c) model, and the resulting calculation of the geomagnetic field, has 
been validated.     

 

 22



 

4. Evaluation of the adiabatic invariant I 
  
The second adiabatic invariant I describes the motion of a particle bouncing between 

two mirror points.  The quantity I is defined by  
 

dl
B
BI

a

a m
∫ −=

*1

1

1
                                                                        (4.1) 

  
where al* and al are the geographic positions of the two mirror points, BBm is the 

magnetic field intensity at the mirror points, B is the magnetic field intensity at an 
arbitrary point along the particles path and dl is an infinitesimal arc length [8].   

 

4.1. Introduction 
 
The integral invariant I is evaluated using UNILIB subroutine UL230 (evaluate the 

integral invariant coordinate I).  The subroutine uses a Runge-Kutta integration technique 
to evaluate (4.1) for a temporary magnetic field line stored in common block UC170 
(temporary magnetic field line).  The field line is evaluated in segments using subroutine 
UF420 (trace a magnetic field line segment passing through a given position).  This 
requires subroutine UF421 (initialize and close a line segment), UF422 (follow a field 
line until a boundary condition is reached) and UF423 to trace the magnetic field line 
(Runge Kutta step [solves the required ordinary differential equations (see below) using 
the Gill Runge-Kutta  method (a fourth-order Runge-Kutta method)] ).  The Runge Kutta 
step size is proportional to the radius of curvature of the magnetic field line [subroutine 
UF425 (evaluate the curvature of the field lines)].   The temporary common block UC170 
contains information on the length of the magnetic field line, the magnetic field vector 
and the local radius of curvature for each of the segments.   

 
The problem of field line tracing is solved by the resolution of three coupled ordinary 

differential equations [9].   
 
The element of length along a field line is given in spherical coordinates by   
 

²²sin²²²² φθρφρρ Δ+Δ+Δ=Δl
                                                   (4.2)                      

 
where Δl is the modulus of the vector Δl ( Δρ, ρΔθ, ρsinθΔφ).  
 

The modulus of the magnetic field vector B is given by  
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                                                             (4.3) 
 
The unit vectors of both quantities follow as  
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                                                        (4.4)     
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                                                               (4.5)              
 
 
Since the vector Δl is always tangential to the field line, the two unit vectors must be 

equal everywhere along the field line.  This produces a set of three ordinary differential 
equations which, in spherical coordinates, are  

 

 

l
B

B
Δ=Δ ρρ

                                                                (4.6) 
 

ρ
θ θ l

B
B Δ
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                                                                 (4.7) 

 

and 

 

θρ
φ φ

sin
l

B
B Δ

=Δ
                                                               (4.8) 

 
Given B, BBρ, BθB  and BBφ, the differential equations can be solved by a Runge-Kutta 

method (subroutine UF423) to find the increments Δρ, Δθ and Δφ, allowing the field line 
to be traced.      
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4.2. Calculation of I for a centered dipole model 
 
For the centered dipole model, the integral invariant I at magnetic latitude λ on a line 

of force having an equatorial radial distance ro is given by [8]    
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where Y= sin λ.   
 
I values computed using this integral will be referred to as ‘exact’ (the listing of the 

Fortran program is given in Appendix A1).   
 
Table 4.1 shows I computed by UNILIB and ‘exact’ values computed using (4.9) for 1 

Re and 3 Re.  The columns labeled ‘Error’ show the relative error defined as( | UNILIB 
estimate – Exact | / Exact ).  The two sets of results are in good agreement with a relative 
error of between 10-5 at low latitudes to 10-6 at high latitudes.  Note that since the value of 
I increases with latitude, the relative error remains small.      
 

 
 1 Re   I / km 3 Re   I / km 

λ / ° UNILIB / km Exact / km Error UNILIB / km Exact / km Error   

-70 133811.361 133811.625 1.98E-06 161258.896 401434.875 5.98E-01 
-60 53753.269 53753.578 5.75E-06 161258.896 161260.734 1.14E-05 
-50 25877.046 25877.268 8.58E-06 77630.588 77631.805 1.57E-05 
-40 13145.706 13146.062 2.71E-05 39436.781 39438.188 3.57E-05 
-30 6436.064 6436.187 1.91E-05 19308.025 19308.561 2.78E-05 
-20 2664.257 2664.337 3.00E-05 7992.653 7993.011 4.49E-05 
-10 649.371 649.420 7.55E-05 1948.114 1948.261 7.55E-05 
0 0.000 0.000 0.0 0.000 0.000 0.0 
10 649.372 649.420 7.39E-05 1948.115 1948.261 7.50E-05 
20 2664.258 2664.337 2.97E-05 7992.653 7993.011 4.48E-05 
30 6436.064 6436.187 1.91E-05 19308.025 19308.561 2.77E-05 
40 13145.707 13146.062 2.70E-05 39436.782 39438.188 3.56E-05 
50 25877.046 25877.268 8.58E-06 77630.589 77631.805 1.57E-05 
60 53753.269 53753.578 5.75E-06 161258.897 161260.734 1.14E-05 
70 133811.361 133811.625 1.97E-06 161258.896 401434.875 5.98E-01 

 

Table 4.1 Comparison of UNILIB and ‘exact’ I  values, computed using the centered 
dipole model, at points located at different geographic latitudes, and at a radius of 1 and 3 
Re.   
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The UNILIB estimate at ±70° and 3 Re is unreliable (equal to the estimate at ±60°).  

For high latitudes the magnetic field lines penetrate out of the magnetosphere and into the 
magnetotail.  By default UNILIB prevents the field line from being traced out of the 
magnetosphere, stopping the calculation of I within a fixed radial distance,.  This explains 
the ‘saturation’ for the UNILIB estimate at λ=±70° as the field line in this case is 
incompletely traced.   

 
Parameters kum533 in common block UC190 (control parameters, set 1) and xbmin in 
common block UC192 (control parameters, set 2) control whether the field lines are 
traced outside of the magnetosphere.  Parameter kum533 is set by default to ‘1’ and  
prevents the magnetic field being traced outside the magnetosphere [subroutine UM533 
(distance to magnetosphere)].  Parameter xbmin, the lowest allowed value of the magnetic 
field intensity, is set by default to 4.0E-05 Gauss.  When kum533 is set to less than zero 
allowing field lines to be traced outside the magnetosphere and xbmin set to a lower 
intensity, say 1.0E-07 Gauss, the UNILIB estimate at ±70° and 3 Re was accurate 
(relative error approximately 10-5).     

 

4.3. Calculation of I for the IGRF model 
 
As (4.9) is valid only for a centered dipole model, an alternative and independent 

method of computing I (i.e. an alternative method of tracing the magnetic field line) 
which can be applied to the IGRF model had to be developed first.  The ‘best’ alternative 
method was found through examination of the centered dipole model.  

 

4.3.1. Comparison of integration methods 
 
Four ‘Runge-Kutta’ methods were examined to solve the differential equations (4.6) to 

(4.8); Euler, Runge-Kutta (as used by UNILIB), Gill and Runge-Kutta adaptive [9].  The 
first three methods require a constant step size during integration.  The fourth method, 
Runge-Kutta adaptive, exerts adaptive control over the step size. Each of the methods 
was applied in a Fortran program to evaluate I for the centered dipole model.  As the field 
line is traced the value of the integrand √(1-B/BBm) and the length of the line segment is 
stored in a vector.  Using this information, integral (4.1) is evaluated using the CERN 
integration routine DGAUSS [10].    

 
Table 4.2 shows values of I, computed using the four Runge-Kutta methods, at a 

radius of 3 Re for the centered dipole model.  The final column of the table shows, for 
comparison, ‘exact’ values of I computed using (4.9).   The step size used by the Euler 
method is 0.7 km, for Runge-Kutta 0.7 km, for Gill 15 km and for Runge-Kutta adaptive, 
an initial step size of 0.4 km.   
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The maximum difference between I computed using the Euler method to trace the 

field line and exact values is 1.26 km (average difference 0.69 km).  The two sets of data 
agree better at low rather than high latitudes.  Additionally, Euler values are symmetric, 
as are the exact values, about 0°.   

 
The maximum difference between I computed using the Runge-Kutta method and 

exact values is 7.99 km (average difference1.69 km).  Again the two sets of data agree 
better at low rather than high latitudes.  Additionally, Runge-Kutta values agree better at 
northern hemisphere latitudes than southern hemisphere latitudes.  Neglecting the Runge-
Kutta values for ±70° , which are significantly different from the exact values, the 
average difference between the two sets of data is 0.91 km.  

 
The maximum difference between I computed using the Gill method and exact values 

is 0.8 km (average difference 0.50 km).  The two sets of data agree better at low latitudes 
and in the Northern hemisphere.   

 
The maximum difference between I computed using the Runge-Kutta adaptive method 

and exact values is 2.38 km (average difference 0.47 km).  Again, the two sets of data 
agree better at low latitudes and in the Northern hemisphere.    
 

 
λ / ° Euler / km Runge-Kutta / 

km 
Gill / km Runge-Kutta 

adaptive / km 
    Exact / km 

-70 401433.613 401440.330 401434.058 401436.333 401434.875 
-60 161261.296 161263.764 161260.160 161261.573 161260.734 
-50 77632.741 77633.768 77631.206 77632.337 77631.805 
-40 39439.087 39439.518 39437.578 39438.538 39438.188 
-30 19309.320 19309.472 19307.963 19308.810 19308.561 
-20 7993.529 7993.563 7992.458 7993.159 7993.011 
-10 1948.500 1948.499 1947.813 1948.308 1948.261 
0 0.000 0.000 0.000 0.000 0.000 
10 1948.500 1948.499 1947.995 1948.308 1948.261 
20 7993.529 7993.492 7992.646 7993.138 7993.011 
30 19309.320 19309.165 19308.130 19308.722 19308.561 
40 39439.090 39438.657 39437.676 39438.291 39438.188 
50 77632.743 77631.687 77631.316 77631.742 77631.805 
60 161261.310 161258.822 161260.195 161260.161 161260.734 
70 401433.617 401426.888 401434.145 401432.492 401434.875 

 

Table 4.2 Comparison of different integration methods applied to evaluate I, compared 
with ‘exact’ values, computed using the centered dipole model, at points located at 
different geographic latitudes, and at a radius of 3 Re.   
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Its is concluded that Gill and Runge-Kutta adaptive are the most suitable for 

evaluating I.  Section 4.3.2 will apply the Runge-Kutta adaptive program to evaluate I for 
the IGRF model and compare with the equivalent UNILIB data.   

 

4.3.2. Results  
 
Table 4.3 shows I computed using UNILIB and the Runge-Kutta adaptive (RK 

adaptive) program (the listing of the Fortran program is given in Appendix A2) for the 
1985 IGRF model at 1 and 3 Re and 0° longitude.  The columns labeled ‘Error’ show the 
relative error defined as ( | UNILIB estimate – RK adaptive estimate | / RK adaptive 
estimate).  The two sets of data have a relative error of between 10-3 at low latitudes to 
10-4 at high latitudes (two orders of magnitude greater than the relative errors shown for 
the centered dipole model).  Additionally, as discussed in section 4.2, saturation is seen 
for the UNILIB estimate of I at +70° latitude and radius 3 Re.    

 
 

λ / ° I Re   I / km 3 Re   I / km 

 UNILIB  RK adaptive Error  UNILIB  RK adaptve Error  
-70 54790.651 54796.757 1.11E-04 213668.369 213696.916 1.34E-04 
-60 33714.655 33719.567 1.46E-04 108432.565 108448.406 1.46E-04 
-50 21912.759 21918.216 2.49E-04 58494.753 58520.259 4.36E-04 
-40 14365.312 14371.110 4.03E-04 31606.675 31628.864 7.02E-04 
-30 9078.048 9081.953 4.30E-04 15925.285 15940.199 9.36E-04 
-20 5145.352 5148.855 6.80E-04 6540.867 6557.312 2.51E-03 
-10 2284.202 2288.798 2.01E-03 1443.546 1452.069 5.87E-03 
0 527.825 529.856 3.83E-03 19.989 20.614 3.03E-02 
10 7.833 8.081 3.07E-03 2264.042 2278.234 6.23E-03 
20 892.508 894.830 2.60E-03 8565.012 8578.372 1.56E-03 
30 3589.598 3593.310 1.03E-03 20260.057 20277.488 8.60E-04 
40 9477.023 9481.242 4.45E-04 41137.869 41155.962 4.40E-04 
50 22032.144 22035.695 1.61E-04 80792.669 80813.728 2.61E-04 
60 46725.819 46727.156 2.86E-05 166461.719 166477.427 9.44E-05 
70 114326.464 114323.117    2.93E-05 166461.719 394085.161 1.37 

 

Table 4.3 Comparison of I values computed using UNILIB and the Runge-Kutta adaptive 
method, computed using the IGRF model, at points located at different geographic 
latitudes, at a radius of 1 and 3 Re, along the meriodian 0° longitude, and epoch 1985.   
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4.4. Improving the accuracy of I 
 
The accuracy of UNILIB’s estimate of I for the IGRF model is relatively good.  

However, by increasing the number of steps to trace the field line stored in common 
block UC170 (temporary magnetic field line), the accuracy of the computed I value can 
be improved (though at the expense of a longer computation time).  

 

4.4.1. Modifying the parameters prop and stepx 
 
Fig 4.1 shows the difference between UNILIB and exact [equation (4.9)] values of I 

for the centered dipole model for points located at different geographic latitudes and a 
radius of 1 Re.  The difference is often as much as a few kilometers and its fluctuating 
nature due to UNILIB’s method of determining the step size as proportional to the radius 
of curvature rather than fixed [as in the Euler or Runge-Kutta methods (see Table 4.2)].    
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Figure 4.1 Difference between UNILIB and exact values of I, computed using the 
centered dipole model at a radius of 1 Re.  Results are computed using the default values 
of prop= 0.2 and stepx= 0.075.  

 

The step size within UNILIB is defined as the radius of curvature multiplied by a 
constant prop [prop is a parameter of common block UC190 (control parameters, set 1) 
which is set, by default, to 0.2].  By decreasing the value of prop, and therefore 
increasing the number of steps used to trace a field line, UNILIB’s estimate of I increases 
in accuracy.  This is illustrated by Fig. 4.2.  Fig. 4.2 is similar to Fig. 4.1, but with the 
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value of  prop used to calculate I reduced from 0.2 to 0.02, increasing the number of steps 
by a factor of 10 [the parameter stepx (maximum step size) was also reduced from 0.075 
to 0.02].  The difference between UNILIB and exact values is now less than 0.09 km.    
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Figure 4.2 Difference between UNILIB and exact values of I, computed using the 
centered dipole model at a radius of 1 Re. Results are computed using the modified 
values of prop= 0.02 and stepx= 0.02.  

 

4.4.2. Centered dipole model 
 
Table 4.4 is similar to Table 4.1 but with UNILIB using modified values of prop= 

0.02, stepx= 0.02, kum533 < 0 and xbmin= 1.0E-07 Gauss (section 4.2).  The relative 
error varies from approximately 10-5 to 10-6, which despite the increased number of steps, 
is only slightly smaller than the errors shown in Table 4.1.  Note that as modified values 
of parameters kum533 and xbmin have been used, at high latitudes the field lines will 
have been traced outside of the magnetosphere allowing an accurate estimation of I.              
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λ / ° I Re   I / km 3 Re   I / km 
 UNILIB  Exact  Error  UNILIB  Exact  Error  

-80 566740.974 566741.375 7.08E-07 1700222.41 1700224.12 1.01E-06 
-70 133811.361 133811.625 1.98E-06 401433.570 401434.875 3.25E-06 
-60 53753.269 53753.578 5.75E-06 161258.896 161260.734 1.14E-05 
-50 25877.046 25877.268 8.57E-06 77630.588 77631.805 1.57E-05 
-40 13145.706 13146.062 2.70E-05 39436.781 39438.188 3.57E-05 
-30 6436.064 6436.187 1.90E-05 19308.025 19308.561 2.78E-05 
-20 2664.257 2664.337 3.01E-05 7992.653 7993.011 4.49E-05 
-10 649.371 649.420 7.59E-05 1948.114 1948.261 7.54E-05 
0 0.000 0.000 0.0 0.000 0.000 0.0 
10 649.372 649.420 7.50E-05 1948.115 1948.261 7.50E-05 
20 2664.258 2664.337 2.98E-05 7992.653 7993.011 4.48E-05 
30 6436.064 6436.187 1.91E-05 19308.025 19308.561 2.77E-05 
40 13145.707 13146.062 2.70E-05 39436.782 39438.188 3.56E-05 
50 25877.046 25877.268 8.56E-06 77630.589 77631.805 1.57E-05 
60 53753.269 53753.578 5.75E-06 161258.897 161260.734 1.14E-05 
70 133811.361 133811.625 1.97E-06 401433.570 401434.875 3.25E-06 
80 566740.974 566741.375 7.08E-07 1700222.41 1700224.13 1.01E-06 

   

Table 4.4 Comparison of UNILIB and ‘exact’ I  values, computed using the centered 
dipole model, at points located at different geographic latitudes, and at a radius of 1 and 3 
Re. Results are computed using the modified values of prop= 0.02, stepx= 0.02, kum533 
< 0 and xbmin= 1.0E-07 Gauss. 

 

4.4.3. IGRF model 
 

Table 4.5 is similar to 4.3 but with UNILIB using modified values of prop= 0.02, 
stepx= 0.02, kum533 < 0 and xbmin= 1.0E-07 Gauss.  The relative error varies from 10-4 
at low latitudes to 10-5 at high latitudes,  an order of magnitude improvement in accuracy 
when compared to Table 4.3.  Additionally, through modifying kum533 and xbmin, the 
UNILIB results are accurate at high latitudes.      
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I Re   I / km 3 Re   I / km λ / ° 
 RK adaptive      UNILIB Error  RK adaptive UNILIB Error  

-70 54795.2307 54794.0397 2.17E-05 213695.025 213692.348 1.25E-05 
-60 33718.5107 33717.4827 3.05E-05 108447.134 108445.103 1.87E-05 
-50 21917.3309 21916.6451 3.12E-05 58519.3604 58517.3229 3.48E-05 
-40 14370.5676 14369.9636 4.20E-05 31628.2307 31626.1318 6.64E-05 
-30 9081.5462 9080.9267 6.82E-05 15939.7539 15938.8674 5.56E-05 
-20 5148.4566 5147.9001 1.08E-04 6557.0436 6556.6149 6.54E-05 
-10 2288.5050 2288.0678 1.91E-04 1451.9436 1451.6513 2.01E-04 
0 529.6991 529.4740 4.25E-04 20.5991 20.5570 2.05E-03 
10 8.0556 7.9924 7.91E-03 2278.0695 2277.8290 1.06E-04 
20 894.5811 894.2751 3.42E-04 8578.0830 8577.6109 5.50E-05 
30 3592.8427 3592.2502 1.65E-04 20277.1384 20276.2960 4.16E-05 
40 9480.6568 9479.9338 7.63E-05 41155.7174 41154.3765 3.26E-05 
50 22035.4420 22035.0512 1.77E-05 80813.9211 80813.0058 1.13E-05 
60 46727.9569 46728.3333 8.06E-06 166478.849 166478.364 2.91E-06 
70 114327.425 114330.417 2.62E-05 394090.308 394093.114 7.12E-06 

 

Table 4.5 Comparison of I values computed using UNILIB and the Runge-Kutta adaptive 
method, computed using the IGRF model, at points located at different geographic 
latitudes, at a radius of 1 and 3 Re, along the meriodian 0° longitude, and epoch 1985. 
Results are computed using the modified values of prop= 0.02, stepx= 0.02, kum533 < 0 
and xbmin= 1.0E-07 Gauss. 

 

4.5. Computation time 
 

Figure 4.3 shows the difference in computation times between using values of  prop of 
0.2 and 0.02.  For example, the time taken to compute 200 values of I increases from 
approximately 1.5 seconds to around 4 seconds if the value of prop is decreased, i.e. 
increasing the precision of the calculations increases the computation time.  Tests were 
performed on a DEC Alpha/OSF system.       

 
 

4.6. Recommendations 
 
For the IGRF model, using the default value of prop (0.2), UNILIB computes I to an 

accuracy of 10-3  to 10-4.  If the number of steps used to trace the field line is increased 
then the accuracy of I increases, though at the expense of a greater computation time.  
Results were shown for the IGRF model, while taking  prop= 0.02, with relative errors of 
10-4  to 10-5 .   
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Figure 4.3 Comparison of computer evaluation times when using the default and 
modified values of prop in the calculation of I. 

 
The user can increase the number of steps by reducing the values of prop and  stepx  in 

common block UC190.  The modified values of prop and stepx must be stated in the 
Fortran program after the subroutine UT990 (initialize the UNILIB library) has been 
called.  This, however, is a rather laborious procedure with no means of knowing the 
exact accuracy of I as the parameters are changed.  It is recommended that a parameter is 
introduced  in subroutine UL230 allowing the user to choose the desired accuracy of I 
(or, at the very least, the subroutines are adapted to allow the parameters prop and stepx 
to be easily modified).   

 
Additionally, it is recommended that the Runge-Kutta adaptive technique used within 

subroutine UF423 (Runge Kutta step) to trace the magnetic field line.  
 
 
A further recommendation is further investigation of the simple Euler method to solve 

the required differential equations.   
 
Finally, it is recommended that alternative default values for parameters kum535 and 

xbmin be investigated to allow reliable computation of I at high latitudes.    
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5. Evaluation  of McIlwain´s magnetic shell parameter L  
 
A convenient system of coordinates is McIlwain’s shell parameter L and magnetic 

field strength B.  Through UNILIB subroutine UL220 (get information on a magnetic 
field line segment), the subroutine UL240 (evaluate the Hilton function) computes the 
shell parameter L [8] from the integral invariant I and the magnetic field intensity BBm at 
the mirror points.   

 

5.1. Centered dipole model 
 
L values computed using UNILIB were compared with results obtained by three 

alternative methods;  
 

1. For a centered dipole model the magnetic shell parameter L is defined as [8]   
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where M is the dipole moment of the Earth and F is the function given by  
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                                                                   (5.2)   
 
where r0 is the equatorial radius.   
 
This allows a set of values of the function F to be calculated, e.g. a table of I3B/M 

values with the corresponding L3B/M values.  For any particular combination of I and B, 
the corresponding value of L can be obtained.  A table containing 1000 values of I3B/M 
and L3B/M as a function of latitude between 0 and 90° was calculated.  A sample set of 
the table is shown as Table 5.1.  Values of I3B/M that are not tabulated, and the 
corresponding L3B/M and L values, are found through interpolation (using CERN’s 
DIVDIF subroutine [10] ).  Data obtained by this method will be labelled ‘Method 1’.      
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λ / ° I³B/M L³B/M 

0.0 0.0 1.0 
1.029601030 0.000000001 1.001454000 
2.230802231 0.000000129 1.006840000 
3.603603604 0.000002307 1.017925000 
4.976404976 0.000016102 1.034400000 
5.062205062 0.000017849 1.035613000 

15.958815959 0.020028921 1.402162000 
20.935220935 0.114635800 1.771635000 

 

Table 5.1 Table of I3B/M values with the corresponding L3B/M values.   

 

2. The integral invariant I is evaluated using the ‘Gill’ Runge-Kutta method 
(section 4.3.1) to trace the magnetic field line.  Using this result, L is evaluated 
by applying the Hilton function (implemented through subroutine UL240).  
Data obtained by this method will be labelled as ‘Method 2’.  

  

3. By definition, for a centered dipole field, L is the radial distance of the 
intersection of the field line with the equator.  It can be shown that [7] 

  
λ2cosLr =

                                                       (5.3)           
where r is the radial distance from the Earth´s center at latitude λ. 

 
Data obtained by this method will be labelled as ‘Method 3’.  
 
Table 5.2 shows L computed at 1 Re using UNILIB, against values computed by the 

three alternative methods detailed.  Only values for –70 to 0° are shown as results are 
symmetric about the equator.   Columns  labelled ‘Error 1’, ‘Error 2’ and ‘Error 3’ show 
the relative error ( | UNILIB estimate – Method estimate | / Method estimate) when 
comparing UNILIB results with those of methods 1, 2 and 3.  L values computed using 
UNILIB agree with the first 3 to 4 digits of the comparison values with a relative error of 
approximately 10-4 at low latitudes to 10-5 at high latitudes.      
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λ / ° L / Re Relative error 

 UNILIB Method 1  Method 2 Method 3 Error 1 Error 2 Error 3 
-70 8.5491 8.5486 8.5493 8.5486 5.85E-05 2.34E-05 5.85E-05 
-60 4.0002 4.0000 4.0004 4.0000 5.00E-05 5.00E-05 5.00E-05 
-50 2.4202 2.4203 2.4204 2.4203 4.13E-05 8.26E-05 4.13E-05 
-40 1.7038 1.7041 1.7040 1.7041 1.76E-04 1.17E-04 1.76E-04 
-30 1.3330 1.3333 1.3332 1.3333 2.25E-04 1.50E-04 2.25E-04 
-20 1.1322 1.1325 1.1324 1.1325 2.65E-04 1.77E-04 2.65E-04 
-10 1.0309 1.0311 1.0311 1.0311 1.94E-04 1.94E-04 1.94E-04 
0 1.0000 1.0000 1.0000 1.0000 0.0 0.0 0.0 

 

Table 5.2 Comparison of values of L computed using UNILIB and three alternative 
methods, computed using the centered dipole model, at points located at different 
geographic latitudes, and at a radius of 1 Re. 

 

Table 5.3 shows L computed at 3 Re.  Again, the relative error varies from 10-4 to 10-5.  
 
 

λ / ° L / Re Relative error 

 UNILIB Method 1  Method 2 Method 3 Error 1 Error 2 Error 3 
-70 25.6472 25.6459 25.6479 25.6459 5.07E-05 2.73E-05 5.07E-05 
-60 12.0004 12.0000 12.0012 12.0000 5.33E-05 6.67E-05 3.33E-05 
-50 7.2604 7.2608 7.2612 7.2608 5.51E-04 1.10E-04 5.51E-05 
-40 5.1113 5.1123 5.112 5.1123 1.96E-04 1.37E-04 1.96E-04 
-30 3.9988 4.0000 3.9996 4.0000 3.00E-04 2.00E-04 3.00E-04 
-20 3.3964 3.3974 3.3972 3.3974 2.94E-04 2.35E-04    2.94E-04 
-10 3.0925 3.0933 3.0932 3.0933 2.59E-04 2.26E-04 2.59E-04 
0 3.0000 3.0000 3.0000 3.0000 0.0 0.0 0.0 

 

Table 5.3 Comparison of values of L computed using UNILIB and three alternative 
methods, computed using the centered dipole model, at points located at different 
geographic latitudes, and at a radius of 3 Re. 

 

5.2. IGRF model 
 
For the IGRF model, L values computed by UNILIB were checked with values 

computed using method 2 (methods 1 and 3 not being applicable).  The integral invariant 
I is evaluated using the Runge-Kutta adaptive method (section 4.3.1) to trace the 
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magnetic field line (as detailed earlier, L is calculated by applying the Hilton function).  
Table 5.4 shows L computed using UNILIB and the RK adaptive program for the IGRF 
1985 model at 1 and 3 Re and 0° longitude.  The UNILIB and RK adaptive results agree 
to the first 3 or 4 digits.  The relative error is typically 10-4 though occasionally 10-5 at 
high latitudes.  (UNILIB data for 70° and 3 Re was unavailable as the field line was 
traced outside the magnetosphere and an error was returned.)   

 
 

λ / ° 1 Re   L / Re 3 Re   L / Re 

 UNILIB RK adaptive Error  UNILIB RK adaptive Error  
-70 4.168775 4.169125 8.40E-05 15.06390 15.0656 1.13E-04 
-60 3.025265 3.02555 9.41E-05 9.104072 9.104985 1.00E-04 
-50 2.391761 2.392082 1.34E-04 6.289990 6.291489 2.38E-04 
-40 1.962656 1.963004 1.77E-04 4.789172 4.790518 2.81E-04 
-30 1.63025 1.630488 1.48E-04 3.929591 3.930537 2.41E-04 
-20 1.363903 1.364127 1.64E-04 3.430258 3.431355 3.20E-04 
-10 1.162879 1.163185 2.63E-04 3.166793 3.167387 1.87E-04 
0 1.035128 1.035269 1.37E-04 3.086154 3.086198 1.41E-05 
10 0.984606 0.984623 1.76E-05 3.179744 3.180724 3.08E-04 
20 1.017085 1.017244    1.56E-04 3.485356 3.486234 2.51E-04 
30 1.161496 1.161737 2.07E-04 4.099315 4.100402 2.65E-04 
40 1.499581 1.499838 1.72E-04 5.246298 5.247378 2.06E-04 
50 2.222984 2.223192 9.36E-05 7.47172 7.472943 1.64E-04 
60 3.633795 3.633871 2.10E-05 12.32155 12.322449 7.30E-05 
70 7.481709 7.481518 2.55E-05 N/A  25.2488 N/A 

 

Table 5.4 Comparison of L values computed using UNILIB and the Runge-Kutta 
adaptive method (the value of I is evaluated using RK adaptive to trace the field line, 
using the Hilton function L is calculated from this I value), computed using the IGRF 
model, at points located at different geographic latitudes, at a radius of 1 and 3 Re, along 
the meriodian 0° longitude, and epoch 1985.  

 

5.2.1. Computation time 

 

The computer evaluation time for evaluation of values of L using the IGRF model 
was, again, very rapid.  On a Hewlett-Packard Workstation, 100 L values were evaluated 
in 1.15 seconds.   
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5.3. The Hilton function 
 
Subroutine UL240 (evaluate the Hilton function) can be simply checked by examining 

the centered dipole model.  UL230 (evaluate the integral invariant coordinate I ) is used 
to compute values of I.  Using these values of I, values of I3B/M are calculated, which, 
using Table 5.1, allows values of  L3B/M  and therefore L to be calculated.  L computed 
using this method will be labelled as ‘method 1’ and will be compared to L obtained by 
subroutine UL220 (get information on magnetic field line), labelled as ‘method 2’.   

 
Table 5.5 shows values of L returned using the two methods at points located at 

different geographic latitudes and at a radius of 3 Re.  The relative error ranges from 10-4 
at high latitudes to 10-5 at low latitudes indicating that the Hilton function is accurately 
implemented through subroutine UL240.   

 
 

λ / °            L / Re Error 

   Method 1  Method 2  
-70 8.546602 8.549134 3.00E-04 
-60 3.999339 4.000219 2.20E-04 
-50 2.419937 2.420231 1.21E-04 
-40 1.703843 1.703837 4.18E-04 
-30 1.333123 1.333018 7.81E-05 
-20 1.132286 1.132223 5.63E-05 
-10 1.030916 1.030913 3.72E-04 
0 1.000000 1.000000 0.0 
10 1.030919 1.030916 3.69E-04 
20 1.132288 1.132225 5.63E-05 
30 1.333123 1.333019 7.81E-05 
40 1.703844 1.703837 4.17E-04 
50 2.419938 2.420231 1.21E-04 
60 3.999339 4.000219 2.20E-04 
70 8.546603 8.549134 2.96E-04 

 

Table 5.5 Verification of subroutine UL240 (evaluate the Hilton function). Comparison 
of L values computed using UNILIB (Method 2) and an alternative method (Method 1), 
computed using the centered dipole model, at points located at different geographic 
latitudes, and at a radius of 3 Re.   
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5.3.1. The inverse Hilton function 
 
The reverse transformation, subroutine UL242 (inverse the Hilton function), 

determines the integral invariant I from the magnetic shell parameter L.  Column 2 of 
Table 5.6 shows I (labelled Iinitial) for the IGRF 1995 model at 2 Re and 320° longitude.  
These I values are transformed to L by UL240 (evaluate the Hilton function) and then 
transformed back to I (shown in column 3 as Ifinal) by subroutine UL242.  The I values of 
columns 2 and 3 are in good agreement, as expected, validating subroutine UL242.  [The 
relative error is an order of magnitude smaller at low latitudes than high latitudes  This is 
possibly due to the inaccuracy in the calculation of L (see Table 5.4), which is slightly 
greater at high latitudes and which may be amplified during the reverse transformation.] 

 
 

λ / ° Iinitial Ifinal Error 
0 754.90712 754.90711 2.00E-08 
10 3910.1963 3910.1944 4.92E-07 
20 10039.269 10039.242 2.65E-06 
30 20814.281 20814.115 7.97E-06 
40 40484.986 40484.290 1.72E-05 
50 80601.792 80599.408 2.96E-05 
60 180342.185 180334.482 4.27E-05 
70 539626.740 539597.902 5.34E-05 
80 2839629.087 2839461.843 5.89E-05 

 

Table 5.6 Verification of subroutine UL242 (inverse the Hilton function). Comparison of 
I values (Iinitial) which are transformed first to L values using subroutine UL240 and then 
back to I using subroutine UL242 (Ifinal). Computed using the IGRF model, at points 
located at different geographic latitudes, at a radius of 2 Re, along the meriodian 320° 
longitude, and epoch 1995.     

 

5.4. Evaluation of arc length 
 
Besides evaluating L, subroutine UL220 (get information on a magnetic field line 

segment) computes the arc length of a magnetic field line between mirror points.   
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5.4.1. Centered dipole model 
   
For a centered dipole field, the length of the magnetic field line can be written as [7] 
 

 
λλλ

λ

dLl ∫ +=
max

0

²sin31cosRe
                                          (5.4) 

 
This integral was evaluated using the integration routine DGAUSS [10].  Table 5.7 

shows l computed at 3 Re using UNILIB subroutine UL220 and by integrating (5.4).  
Comparing the two sets of data, the relative error varies from 10-5 to 10-7 indicating the 
arc length l is reliably evaluated by UNILIB.  Note that UNILIB results are more accurate 
at high rather than low latitudes.   

 
 

λ / ° l / km Error 
 UNILIB Exact  

-70 412498.26 412498.95 1.68E-06 
-60 172102.5 172101.9 3.54E-06 
-50 88115.77 88114.95 9.32E-06 
-40 49370.97 49370.15 1.67E-05 
-30 28383.3 28382.6 2.59E-05 
-20 15631.9 15631.3 3.59E-05 
-10 6946.3 6945.8 7.64E-05 
0 0.0 0.0 0.0 
10 6946.33 6946.29 6.05E-06 
20 15631.86 15631.81 2.88E-06 
30 28383.34 28383.28 1.94E-06 
40 49370.97 49370.92 1.13E-06 
50 88115.77 88115.68 9.87E-06 
60 172102.51 172102.38 7.32E-07 
70 412498.26 412498.13 3.25E-07 

 

Table 5.4 Comparison of UNILIB and ‘exact’ values of the magnetic field line length l, 
computed using the centered dipole model, at points located at different geographic 
latitudes, and at a radius 3 Re 
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5.4.2. IGRF model 
 
The Runge-Kutta adaptive program of section 4.3.1, written to evaluate the integral 

invariant I for the IGRF model, computed the length of the field line.  Table 5.8 shows l 
computed using UNILIB with the equivalent RK adaptive values for the IGRF 1985 
model at 3 Re and 180°.  Similar to the centered dipole results, the relative error varies 
from approximately 10-5 to 10-7, indicating that the arc length for the IGRF model is 
reliably evaluated.   

 
 

λ / °      l / km Error 

  UNILIB  RK adaptive  
-70 492857.457 492858.800 2.72E-06 
-60 218395.866 218396.600 3.36E-06 
-50 111556.777 111557.200 3.79E-06 
-40 62227.106 62227.400 4.72E-06 
-30 36057.202 36057.400 5.48E-06 
-20 20621.266 20621.400 6.50E-06 
-10 10580.909 10581.000 8.62E-06 
0 3164.353 3164.400 1.50E-05 
10 3482.307 3482.400 2.67E-05 
20 11016.863 11017.000 1.24E-05 
30 21401.536 21401.600 2.99E-06 
40 37746.114 37746.200 2.28E-06 
50 66417.028 66417.000 4.2E-07 
60 123462.868 123462.400 3.79E-06 
70 259348.341 259347.000 5.17E-06 

 

Table 5.7 Comparison of UNILIB and ‘RK adaptive’ values of the magnetic field line 
length l, computed using the IGRF model, at points located at different geographic 
latitudes, at a radius of 3 Re, along the meriodian 180° longitude, and epoch 1985. 

 

5.5. Increasing the number of steps used to trace field line 
 
Similar to the evaluation of I, a more accurate estimate of L can be obtained by 

UNILIB if the number of steps used to trace the field line is increased (i.e. a more 
accurate estimate of I is obtained which leads to a more accurate estimate of L).  As 
discussed in section 4.4 this is achieved by modifying the parameters prop and stepx.   
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5.5.1. IGRF model 
 
Table 5.9 is similar to 5.4, but with L computed using modified values of  prop= 0.02, 

stepx= 0.02, kum533 < 0 and xbmin= 1.0E-07 Gauss.  The relative error of the UNILIB 
data varies from 10-5 at low latitudes to 10-7 at high latitudes, two orders of magnitude 
less than the relative errors of  Table 5.4 (calculated using the default parameter values).  
As discussed, reducing the value of prop from 0.2 to 0.02 increases the number of steps 
used to trace the field line by a factor of 10. 

  
 

λ / ° 1 Re   L / Re 3 Re   L / Re 
 UNILIB RK adaptive Error  UNILIB RK adaptive Error  

-70 4.168943 4.169038 2.28E-05 15.065327 15.065418 6.05E-06 
-60 3.025448 3.025489 1.35E-05 9.104873 9.104912 4.27E-06 
-50 2.392016 2.392030 5.94E-06 6.291418 6.291436 2.86E-06 
-40 1.962969 1.962972 1.38E-06 4.79047 4.79048 5.09E-07 
-30 1.630461 1.630463 1.41E-06 3.930506 3.930508 5.07E-07 
-20 1.364104 1.364101 1.83E-06 3.431336 3.431337 2.91E-07 
-10 1.163167 1.163166 7.74E-07 3.167378 3.167378 0.0 
0 1.035258 1.035258 2.90E-07 3.0861973 3.086197 9.72E-08 
10 0.984621 0.984621 3.05E-07 3.1807125 3.180712 1.57E-07 
20 1.017227 1.017227 9.83E-08 3.4862166 3.486215 4.59E-07 
30 1.161708 1.161706 1.64E-06 4.100385 4.10038 1.22E-06 
40 1.499810 1.499802 5.20E-06 5.2473766 5.247363 2.59E-06 
50 2.223196 2.223177 8.32E-06 7.4729844 7.472954 4.36E-06 
60 3.633973 3.633917 1.54E-05 12.3226 12.32253 5.68E-06 
70 7.481921 7.481764 2.10E-05 25.249267 25.249092 6.93E-06 

 

Table 5.8 Comparison of L values computed using UNILIB and the Runge-Kutta 
adaptive method (the value of I is evaluated using RK adaptive to trace the field line, 
using the Hilton function L is calculated from this I value), computed using the IGRF 
model, at points located at different geographic latitudes, at a radius of 1 and 3 Re, along 
the meriodian 0° longitude, and epoch 1985.  Results are computed using the modified 
values of prop= 0.02, stepx= 0.02, kum533 < 0 and xbmin= 1.0E-07 Gauss.   
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5.5.2. Computation time 

 

Using the modified values of prop= 0.02 and stepx= 0.02 the computer evaluation time 
was, surprisingly, unchanged.  Using a Hewlett-Packard Workstation it still took 
approximately 1.15 seconds to evaluate 100 L values using UNILIB subroutines. 

 

5.6. Recommendations 
 
For the IGRF model, L computed using UNILIB subroutine UL220 had a relative 

error of between 10-4  to 10-5.  It was shown that by increasing the number of steps used to 
trace the field line by a factor of 10 the relative error was reduced to 10-5 to 10-7.  It is 
recommended that a parameter is introduced  in subroutine UL220 allowing the user to 
choose the desired accuracy of L. 
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6. Evaluation of the lowest altitude of mirror points 
 

6.1. Introduction 
 
The drift shell is defined as a set of magnetic field line segments characterized by the 

same integral invariant I, shell parameter L and magnetic field intensity Bm at the mirror 
point.  Typically, the altitude of the mirror points will vary with latitude and longitude.  
An important geomagnetic quantity is to determine the geographic positions of the mirror 
points of lowest altitude in the northern and southern hemisphere and the lowest altitude 
hmin.  Within UNILIB, this is achieved by either subroutine UD315 (search the mirror 
point of lowest altitude) or subroutine UD317 (trace a magnetic drift shell [new]).  Rather 
than examine the location of the lowest altitude mirror point, this section will examine 
UNILIB’s evaluation of the minimum altitude hmin.  
 

Subroutine UD315 scans the field line segments of a drift shell and determines the 
geographic positions of the mirror points with the lowest altitude in the northern and 
southern hemisphere [also required is subroutine UD310 (trace a magnetic drift shell)].  
(In the UNILIB library, see Example 4 (page 88) for a sample program to search the 
point with lowest altitude on a magnetic drift shell.) 

 
Subroutine UD317 traces a magnetic drift shell (used as an alternative to UD310) and 

returns the altitude of the lowest mirror point (though not its geographic position).     
 

6.2. Centered dipole model 
 
For a centered and aligned dipole model, the altitude hmin of the lowest mirror point is 

defined as [7]  
  

λ²cosReReminmin Lah =+=
                                                   (6.1) 

 
where amin is the minimum altitude above the Earth surface (Re, L and λ as previously 

defined).   
 
Examining (6.1), the altitude of the lowest mirror point is independent of longitude.  

As subroutine UD315 searches for the lowest mirror point position, as a function of 
longitude, by searching for an absolute minimum, it is not suitable for application to the 
centered dipole model.  Therefore, for this instance, UD317 was applied to evaluate hmin. 

 
Fig 6.1 shows the difference between UNILIB’s estimate of hmin and the ‘exact’ value 

computed using (6.1) for combinations of B and L.  The drift shell parameter L varies 
between 1 and 5 and the magnetic field of the mirror points varies between 0.01 and 0.35 
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Gauss.  The relative difference between the two estimates is strongly dependent on the 
magnetic field strength B with points at high B (close to the Earth) having a relative 
difference less than 0.25 km and as B decreases (distance increasing from the Earth) the 
relative difference increasing to a maximum of around 2 km.   
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Figure 6.1 Relative difference between UNILIB and exact estimate of hmin, computed 
using the centered dipole model for different combinations of B and L. 

 

6.3. IGRF model   
 
As the exact formula (6.1) is not applicable for the IGRF model, section (6.3.1) describes an 

alternative method of computing hmin.    
 

6.3.1. Alternative method of evaluating hmin 
 
As discussed, a drift shell is characterized by a ring of mirror points BBm and a surface of 

constant L.  Figure 6.2 shows a line of constant B (B = BconstantB ) and a line of constant L 
(L= Lconstant) around the Earth.  The ring of mirror points will lie on the intercept of the B 
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and L lines, enabling, the altitude and latitude of the mirror points to be obtained.  This is 
achieved by obtaining the minimum of the distance Ai – Bi , where Ai and Bi are points that 
lie on the lines of constant B and L, i.e. examing Fig 6.2, B1 – A1 > B2 – A2 > B3 – A3 = 0, where 
points A3 and B3 lie on the ring of mirror points.  This procedure is repeated as a function of 
longitude (i.e. tracing along the ring of mirror points), which, by applying Brent’s algorithm [9] 
(a parabolic interpolation method), enables the longitude position of the minimum altitude point 
to be determined.  This method was applied, implemented by a Fortran program (the listing of the 
Fortran program is given in Appendix A3), to evaluate the minimum altitude hmin of the mirror 
points.  [This program required UNILIB subroutines to evaluate L which used the 
modified values of prop= 0.02, stepx= 0.02, kum533 < 0 and xbmin= 1.0E-07 Gauss.] 

 

 
 

Figure 6.2 An alternative method of evaluating hmin.  The diagram shows a line of 
constant B and a line of constant L.  The ring of mirror points will lie on the intercept of 
the B and L lines.   

.   

This method was verified by evaluating hmin for the centered dipole model and 
comparing with the exact estimate (6.1).  Fig. 6.3 shows that the relative difference 
between the two estimates varies from –0.1 km for high B to 0.7 km for low B.  The 
estimates produced by this alternative method are considerably better than the UNILIB 
results of Fig 6.1 and indicate that the method is a valid alternative for which to compare 
UNILIB IGRF results. 
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Figure 6.3 Verification of the alternative method of calculating hmin. Relative difference 
between the alternative and exact estimate of hmin, computed using the centered dipole 
model for different combinations of B and L. 

 

6.3.2. Results 
 
Fig 6.4 shows the difference between UNILIB’s estimate of hmin (computed using 

subroutine UD315) and the estimate computed using the alternative method for 
combinations of B and L and epoch 1985.  The difference between the two estimates is 
typically less than 0.5 km, though, for low B (far from the Earth surface) the difference 
increases to a maximum of around 2.5 km.   
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Figure 6.4 Relative difference between UNILIB and alternative estimate of hmin, 
computed using the IGRF model for different combinations of B and L and epoch 1985. 

 

6.3.3. Computation time 
 
Using a Hewlett-Packard Workstation it took approximately 1 second for UNILIB to 

evaluate hmin for each combination of B and L.    
 

6.4. Increasing the number of steps used to trace field line 
 
As discussed in section 5.5, the accuracy that UNILIB computes L can be increased if 

the parameters prop and stepx are modified from their default values.  This section 
examines UNILIB estimates of hmin computed using the modified values prop= 0.02 and 
stepx= 0.02.   

 

6.4.1. Centered dipole model 
 
Fig. 6.5 is similar to Fig. 6.1 but with UNILIB using the modified values. The 

UNILIB results are substantially more accurate with the maximum difference between 
the two sets of results now 0.4 km, while for points close to the Earth’s surface (high B, 
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low L) the relative difference is almost zero.   
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Figure 6.5 Relative difference between UNILIB and exact estimate of hmin, computed 
using the centered dipole model for different combinations of B and L. Results are 
computed using the modified values of prop= 0.02 and stepx= 0.02. 

 

6.4.2. IGRF model 
 
Fig. 6.6 is similar to Fig. 6.4 but with UNILIB using the modified values.  Again, 

UNILIB results are substantially more accurate with the maximum difference now 0.3 
km, while for points close to the Earth’s surface the relative difference is approximately 
0.15 km.   
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Figure 6.6 Relative difference between UNILIB and alternative estimate of hmin, 
computed using the IGRF model for different combinations of B and L and epoch 1985. 
Results are computed using the modified values of prop= 0.02 and stepx= 0.02.   

 

6.5. Recommendations 
 
Increasing the number of steps used to trace the field lines significantly improved the 

accuracy that UNILIB computes hmin.  Similar to chapters 4 and 5, it is recommended that a 
input parameter is introduced that allows the user to choose the desired accuracy that hmin is 
computed.  

 
.   
 

 50



 

7. Conclusion 
 

This report has confirmed the usefulness of the UNILIB Fortran library (version 2.03) 
in calculating some of the basic geomagnetic quantities, such as, the (B, L) coordinates, 
the third adiabatic invariant I and the altitude of the lowest mirror point hmin (the accurate 
evaluation of these quantities indicates UNILIB’s ability to trace magnetic field lines and 
drift shells).  The validation was for the centered dipole model, IGRF model, and, for the 
external magnetic field, Tsyganenko’s model.  The centered dipole model, though not 
particularly realistic, was useful as ‘exact’ analytical expressions were often available.  
Given below is a summary of UNILIB´s implementation of the IGRF model in the 
calculation of B, I, L and hmin.   
 
UNILIB was applied to evaluate the geomagnetic field strength, with results in excellent 
agreement with the ‘benchmark’ GEOPACK and exact analytical results.   

 
UNILIB’s estimation of I, for the IGRF model, showed a relative error of between 10-3 

and 10-4, though, by increasing by a factor of 10 the number of steps used to trace the 
field line (modified values of  prop= 0.02 and stepx= 0.02 in common block UC190), the 
relative error decreased to between 10-4 and 10-5 (though at the expense of a longer 
computation time).  It is shown in chapter 4 how to modify the parameters prop and 
stepx, though it is recommended that UNILIB be adapted so that, rather than altering the 
value of prop, a parameter is introduced allowing control over the number of steps used 
to trace a field line or the accuracy of I returned.   

 
UNILIB’s estimation of L, for the IGRF model, showed a relative error of between  

10-4 and 10-5.  Again, by increasing the number of steps to trace the field line by a factor 
of 10,  the relative error decreased to between 10-6 and 10-7.  It was again recommended 
that some control over the accuracy of L returned be introduced.   

 
UNILIB’s estimation of the minimum altitude of a drift shell hmin, for the IGRF 

model, was accurate to within 0.3 to 3 km (the disagreement increasing as the distance 
from the Earth increased).  Increasing the number of steps used to trace a field line by a 
factor of 10 reduced the disagreement to between 0.15 and 0.3 km for all combinations of 
B and L examined.  Again, it is recommended that a parameter be introduced allowing 
control over the accuracy of hmin returned.    
 
It was shown that the accuracy of I, L and hmin could be substantially improved if the 
number of steps used to trace field lines was increased.  It was recommended that, within 
the Fortran subroutines, an input parameter is introduced that allows the user to either 
select the accuracy with which a field line is traced or the accuracy of the particular 
geomagnetic parameter returned.  This could be easily implemented in a future version of 
UNILIB.       
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This study has shown that the UNILIB software library is an accurate and reliable method 
of computing basic geomagnetic quantities.  In general it was found that the library was 
easy to use and of great use to the magnetospheric modelling community.   
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Appendix 
 
A.1 Fortran program to compute I for centered dipole model 
 
*****************************************************$ 
***This program compute the integral invariant belongs 
***to the McIlwain's article "coordinates for mapping 
***the distribution of magnetically trapped particles 
***Journal of Geophysical research Vol 66 No 11 1961 
 
 program EVABL 

 implicit double precision (a-z) 
 real value,tier 
 real*8 i,pi,r0 
               REAL*8 gcolat,gradius,glong,i3bm,bpos,moment 
 COMMON/GEOPOS/gcolat,gradius,glong 
 COMMON/RESULT/I3BM,BPOS,MOMENT 
 common/INVA/invari 
 
 call initnorvar 
***moment is year dependent the value below is for the 1995 year** 
 moment=0.30207661 
 do i=90.,10.,-10. 
 pi=4.d0*atan(1.) 
 
**** define geographic position******** 
 glong=0. 
 gradius=6371.2 
 gcolat=i 
 la=(gcolat)*pi/180.d0 
 
***compute the equatorial radial distance 
 r0=gradius/dcos(la)**2. 
 
***** print the latitude and the I belongs to the article formula 
 print*,90.-gcolat,100000*(funh1(la)*moment*(gradius/r0)**3.) 
 
 enddo 
 stop 
 end 
 
***** compute the invariant I at a latitude lamda, see equation 1of article *** 
 real*8 function funh1(lat) 
 implicit double precision (a-z) 
 common/LATIT/latmir 
 external integrand 
 zero = 0. 
 eps = 0.001 
 latmir=dabs(lat) 
 sinlatmir = dsin(latmir) 
 funh1 = dgauss(integrand,zero,sinlatmir,eps) 
 return 
 end 
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******** compute the integrandi, see equation 1 of article**** 
*****it is the first step for the I calculation** 
 real*8 function integrand(sivar) 
 implicit double precision (a-z) 
 common/LATIT/latmir 
 common/INVA/invari 
 simir = dsin(latmir) 
 
 d1 = 1.d0+ 3.d0*sivar*sivar 
 d2 = 1.d0+ 3.d0*simir*simir 
 d3 = 1.d0- simir*simir 
 d4 = 1.d0- sivar*sivar 
  
 fact1 = dsqrt(d1/d2)  
 fact2 = (d3/d4)**3 
 integrand = 2.d0*dsqrt(1.d0-fact1*fact2)*dsqrt(d1) 
 return 
 end 
 
******** compute h2 function, see equations 3 and 4 of article 
 real*8 function funh2(lamda) 
 implicit double precision (a-z) 
 funh2 = dsqrt(1.+3.*dsin(lamda)**2)/(dcos(lamda))**6. 
 return 
 end 
 
******** compute h4 function********************************* 
 real*8 function funh4(lamda) 
 implicit double precision (a-z) 
 common/LATIT/latmir 
 funh4 = funh2(lamda) * (funh1(latmir))**3 
 return 
 end 
 
******* table 1 of the article I³B/M  and L³B/M 
 subroutine initnorvar 
 implicit double precision (a-z) 
 integer cnt,l 
 parameter (l=1000) 
 real lbm(l),ibm(l),lat(l) 
 common/LATIT/latmir 
 common/MAGNVAL/lbm,ibm 
 un = 1. 
 neufcentnn = 999. 
 pi = dacos(-un) 
 lamdamin = 0. 
 lamdamax = pi/2.1 
 dlamda = (lamdamax-lamdamin) 
 delta = dlamda/neufcentnn 
 open(1,file='ivalue.res',status='unknown') 
 do cnt = 1,1000 
    latmir = delta*(float(cnt)-1.) + lamdamin 
    ibm(cnt)=funh4(latmir) 
    lbm(cnt)=funh2(latmir) 
*    write(1,*)cnt,ibm(cnt),lbm(cnt) 
*5    format (I4,1x,2f15.2) 
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 enddo 
 close(1) 
 return 
 end 
*******interpolation **************** 
****used for interpolation in the previously computed table 
 real*8 function interpol(val) 
 implicit double precision (a-z) 
 integer l 
 parameter (l=1000) 
 real lbm(l),ibm(l) 
  real val 
 common/MAGNVAL/lbm,ibm 
 interpol=divdif(lbm,ibm,l,val,1) 
 return 
 end 
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A.2 Fortran program to compute I for IGRF model 
 
 program main     
 
 implicit double precision (a-z) 
 double precision totlong,xf 
 integer ifail 
 INCLUDE 'structure.h' 
 COMMON/FIELD/bmod,brho,btheta,bphi 
 COMMON/GLOB/eps,re1 
 COMMON/END1/totlong 
 COMMON/END2/xf 
 COMMON/PAS/dlf 
 COMMON/LMA/lva 
 RECORD/ZGEO/mpos 
 RECORD/ZVEC/mb,mnr 
 
 do a=60.d0,80.d0,10. 
    call initialise 
    alt=re1 
    ala=a 
    alo=0.d0 
    alt=3.*re1 
    dlf=0.7 
    test=lvalue(alt,alo,ala) 
                   write(6,111)test,lva,totlong,ala 
111    format(4(1x,f18.6)) 
 enddo 
 stop 
 end 
************************************************$ 
 double precision function lvalue(alt,alo,ala) 
 
 double precision alt,alo,ala,bmod,brho,btheta,bphi,bmir,integr 
 real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30) 
 real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl 
 real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3 
 double precision invaria,eps,re1 
 real*8 fvet,pvet,epsomeg,dltalt 
                real*8 epskm,epsrel 
                real*8 stplst,xclat 
 real*8 lva 
 integer flag,modf,okstep,dir 
                integer*4 kmflg,kum533 
                integer i,dim,a 
 
 INCLUDE 'structure.h' 
 
 COMMON/FIELD/bmod,brho,btheta,bphi 
 COMMON/STOP/flag,modf,okstep,dir 
 COMMON/MIRR/bmir,integr 
 COMMON/GLOB/eps,re1 
 COMMON/INVA/invaria 
 RECORD/ZLBL/mlab 
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 RECORD/zfln/mlin 
                 RECORD/zseg/mele(nx170) 
 RECORD/ZIMF/mint 
                RECORD/Zsun/msun 
               RECORD/Zemf/mext 
 
 COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet, 
     *    epsomeg,dltalt 
 COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel, 
     *   stplst,xclat,kmflg,kum533 
 COMMON /UC170/nsg,kgp,mlab,mlin,mele 
 COMMON /UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma 
                COMMON/UC140/ mint,mext,msum 
 COMMON/LMA/lva 
 
*  compute magnetic field vector 
 
 call afield (alt,alo,ala) 
 
 bmir=bmod 
 
*  follow magnetic field line towards the north 
 
 call tracenorth(alt,alo,ala) 
 call revers 
 
        if(flag.eq.1)then 
             flag =0 
             modf=0 
             okstep=0 
 
*  follow magnetic field line towards the south 

 
             call tracesouth(alt,alo,ala) 
        endif 
 
*  compute invariant I 
 
        call invarian 
 
        mlab.finv=invaria 
        mlab.fbmp=bmir 
        mlab.linv=.TRUE. 
        mlab.lbmp=.TRUE. 
 
* for dipolar field remmove comment 
* gmagmo=mint.gmmo 
 
 
* Use Hilton function to compute L from I 
 
        call UL240(mlab,ifail) 
        
         if(ifail.lt.0)then 
                print*,ifail 
        endif 
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*  lva is the integral invariant I value and lvalue is the McIlwain parameter L 
 
        lva=invaria 
        lvalue=mlab.flmi 
        return 
        end 
*****************************************************************$$ 
        subroutine initialise 
 
        INCLUDE 'structure.h' 
        INTEGER*4    kunit, kinit, ifail, kint, kext, nfbm, noprint 
        CHARACTER*32 lbint, lbext 
        REAL*8 year, param(10) 
        real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30) 
        real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl 
        real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3    
        real*8 fvet,pvet,epsomeg,dltalt    
       double precision eps,re1,bmir,dlf 
        real*8 epskm,epsrel 
        real*8 stplst,xclat 
        integer*4 kmflg,kum533 
 integer flag,modf,okstep,dir 
 
 COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet, 
     *    epsomeg,dltalt 
 COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel, 
     *   stplst,xclat,kmflg,kum533 
 COMMON/UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma 
                COMMON/UC140/ mint,mext,msum 
 COMMON/STOP/flag,modf,okstep,dir 
 COMMON/MIRR/bmir,integr 
                COMMON/INTER/var,inte 
 COMMON/GLOB/eps,re1 
 
        RECORD /zimf/ mint 
        RECORD /zsun/ msun 
        RECORD /zemf/ mext 
       RECORD/ZDAT/ mdate 
C 
C     initialisation 
C 
        DATA kunit, kinit, kint, kext, nfbm, noprint/ 0, 1, 0, 0, 1, -1/ 
        DATA year, param/ 1985.0d0, 10*0.0d0/ 
 
       eps=0.00001 
       re1=6371.2 
       flag =0 
       modf=0 
      okstep=0 
      dir=1 
        
      mdate.iyear   = 1985 
      mdate.imonth  =    1 
      mdate.iday    =    1 
      mdate.ihour   =    0 
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      mdate.imin    =    0 
      mdate.secs    =    0.0d0 
C 
 
*Initialize the UNILIB library 
 
        CALL UT990 (kunit, kinit, ifail) 
        IF( ifail .LT. 0 )STOP 
 
* modify some values to trace magnetic field line outside the magnetopause        
  
       xbmin=0.00000001 
        xrmin=0.1 
        kum533=-1 
        xbmax=100000000. 
 
* set geomagnetic field model 
 
        CALL UM510 (kint, year, lbint, kunit, ifail) 
        IF( ifail .LT. 0 )STOP 
 
* for centered dipol field remove comments  
 
*      mint.norder    = 2 
*      mint.label     = 'Dipolar magnetic field          ' 
*      mint.coef(2,1) = mint.gmmo * 1.0d+05 
*      mint.coef(1,2) = 0.0d+00 
*      mint.coef(2,2) = 0.0d+00 
*      mint.elong     = 0.0d+00 
*      mint.colat     = 0.0d+00 
 
        CALL UT540 (mdate) 
        CALL UM520 (kext, mdate.amjd, param,lbext, kunit, ifail) 
        IF( ifail .LT. 0 )STOP 
 return 
 end 
******************************************************* 
       subroutine tracenorth(alt,alo,ala) 
 
* this subroutine trace a magnetic field line in the northem direction 

* and store the length of the field line already computed as well as the integrand  
mB

B
−1  

 
 
        double precision bopti,altopti,latopti,lonopti,newdlopt,integropti 
        double precision aintegr(3100000),atrajet(3100000),b(3100000) 
        double precision var(3100000),inte(3100000) 
        double precision newalt,newlat,newlon,newdl 
        double precision alt,ala,alo 
        double precision bmir,integr 
        double precision totlong 
        double precision dlf 
 
        integer flag,modf,okstep,dir 
        integer i,dim 
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        COMMON/OPT/bopti,altopti,latopti,lonopti,newdlopt,integropti 
        COMMON/NEWP/newalt,newlat,newlon,newdl 
        COMMON/END/totlong,aintegr,atrajet,b 
        COMMON/STOP/flag,modf,okstep,dir 
        COMMON/INTER/var,inte 
        COMMON/MIRR/bmir,integr 
        COMMON/NPAS/i,dim 
        COMMON/PAS/dlf 
 
        newdl=0. 
        integr=0. 
 
* perform the first step towards the north 
 
        call step (alt,alo,ala,dlf) 
        call integrand 
        aintegr(1)=integr 
        atrajet(1)=newdl 
         i=1 

 
        do while(flag.eq.0) 

                i=i+1 
 
   * perform one step towards the north 
 
 
                call step(newalt,newlon,newlat,dlf) 

* compute the integrand 
mB

B
−1  

 
                call integrand 
                if(modf.eq.0)then 
               aintegr(i)=integr 
               atrajet(i)=newdl 
          else 
               i=i 
               inte(i)=integr 
               var(i)=newdl 
          endif 
        enddo 
        totlong=newdl 
        return 
       end 
*************************************************************** 
       subroutine revers 
 
        double precision aintegr(3100000),atrajet(3100000),b(3100000) 
        double precision var(3100000),inte(3100000) 
        double precision totlong 
        integer i,n,dim,m 
        COMMON/END/totlong,aintegr,atrajet,b 
        COMMON/INTER/var,inte 
        COMMON/NPAS/i,dim 
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* reverse the order in the table computed by trace north 
 
       do n=i-1,0,-1 
         var(i-n)=dabs(atrajet(n+1)-totlong) 
         inte(i-n)=aintegr(n+1) 
        enddo 
        dim=i-n-1 
        return 
        end 
******************************************************** 
       subroutine tracesouth(alt,alo,ala) 
  
* trace magnetic field line towards the south 
 
        double precision bopti,altopti,latopti,lonopti,newdlopt,integropti 

        double precision newalt,newlat,newlon,newdl 
        double precision var(3100000),inte(3100000) 
        double precision alt,ala,alo 
        double precision bmir,integr 
        double precision dlf 
        integer flag,modf,okstep,dir 
        integer m,i,dim 
 
        COMMON/OPT/bopti,altopti,latopti,lonopti,newdlopt,integropti 

        COMMON/NEWP/newalt,newlat,newlon,newdl 
        COMMON/STOP/flag,modf,okstep,dir 
        COMMON/MIRR/bmir,integr 
        COMMON/INTER/var,inte 
        COMMON/END1/totlong 
        double precision totlong 
        COMMON/NPAS/i,dim 
        COMMON/PAS/dlf 
  
        dir=-1 
        m=i 
        newdl=0. 
        integr=0. 
        call step (alt,alo,ala,dlf) 
        call integrand 
        do while(flag.eq.0) 
          m=m+1 
          call step(newalt,newlon,newlat,dlf) 
          call integrand 
 
           if(modf.eq.0)then 
             var(m+1)=newdl 
             inte(m+1)=integr 
          else 
             m=m-1 
             var(m+1)=newdl 
             inte(m+1)=integr 
          endif 
          dim=m+1 
        end do 
        totlong=newdl 
        return 
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        end 
**************************************************** 
       subroutine integrand 
 

* compute the integrand  
mB

B
−1  

 
        double precision integr,bmir 
        double precision bmod,brho,btheta,bphi 
        double precision oldalt,oldala,oldalo,oldbmod,dlold 
        COMMON/MIRR/bmir,integr 
        COMMON/FIELD/bmod,brho,btheta,bphi 
        COMMON/OLD/oldalt,oldala,oldalo,oldbmod,dlold 
 
        if(bmod.gt.bmir)then 
  if((dabs(oldbmod-bmir)).le.1.0E-008)then 
   integr=0. 
  else 
          integr=dsqrt(1.-(oldbmod/bmir)) 
  endif 
        else 
          integr=dsqrt(1.-(bmod/bmir)) 
        endif 
        return 
        end 
*********************************************************** 
 subroutine afield (alt,alo,ala) 
 
* compute magnetis field 
 
                INCLUDE 'structure.h' 
 double precision alt,alo,ala 
 double precision bmod,brho,btheta,bphi 
 real*8 pi,deg,re,gmagmo,eclipt,geoid,uma 
 real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl 
 real*8 fvet,pvet,epsomeg,dltalt 
 real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3 
                real*8 epskm,epsrel 
                real*8 stplst,xclat 
                integer*4 kmflg,kum533 
 integer*4 ifail 
 integer i,dim 
 
        RECORD/Zvec/ mb 
        RECORD/ZGEO/ mpos 
        RECORD /zimf/ mint 
        RECORD /zsun/ msun 
        RECORD /zemf/ mext 
 
        COMMON/NPAS/i,dim 
        COMMON/UC140/ mint,mext,msum 
        COMMON/FIELD/bmod,brho,btheta,bphi 
        COMMON/UC160/pi,deg,re,gmagmo,eclipt,geoid,uma 
        COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel, 
     *   stplst,xclat,kmflg,kum533 
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        COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet, 
     *    epsomeg,dltalt 
 
***set geographic position 
 
        mpos.radius=alt 
        mpos.colat=90.-ala 
        mpos.elong=alo 
         
* compute geomagnetic field vector 
 
        CALL UM530(mpos,mb,ifail) 
        IF( ifail .LT. 0 )then 
  print*,ifail,ala,mpos.colat 
  stop 
        endif 
        bmod=mb.dnrm 
        brho=mb.rho 
        btheta=mb.theta 
        bphi=mb.phi 
        return 
        end 
********************************************************************* 
***this subroutine set the step along the field line***** 
 subroutine step (alt,alo,ala,dlf) 
 
* compute one step along the magnetic field line belongs to the Runge-Kutta adaptive method 
 
                INCLUDE 'structure.h' 
 double precision brho,btheta,bphi,bmod,alt,ala,alo,dlf 
 double precision oldalt,oldala,oldalo,oldbmod,dlold 
 double precision newalt,newlat,newlon,newdl 
 double precision oldbphi, oldbthet, oldbrho 
 real*8  pi,deg,re,gmagmo,eclipt,geoid,uma 
 double precision bmir,integr 
 double precision y(3),dydx(3),x,h,yout(3),you(3),yscale(3) 
 real*8 htry,epss,hdid,hnext,xx 
 integer flag,modf,okstep,dir,n 
 COMMON/GLOB/eps,re1 
 COMMON/MIRR/bmir,integr 
 COMMON/STOP/flag,modf,okstep,dir 
 COMMON/FIELD/bmod,brho,btheta,bphi 
 COMMON/NEWP/newalt,newlat,newlon,newdl 
 COMMON/BOLD/oldbphi, oldbthet, oldbrho 
 COMMON/OLD/oldalt,oldala,oldalo,oldbmod,dlold 
 COMMON /UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma 
 COMMON/OUT/you 
 COMMON/OUT1/xx 
 RECORD/ZGEO/mpos,mpos1 
  
               call afield(alt,alo,ala) 
               oldalt=alt 
               oldala=ala 
               oldalo=alo 
               oldbmod=bmod 
               oldbrho=brho 
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               oldbthet=btheta 
               oldbphi=bphi 
               dlold=newdl 
 
 mpos.radius=alt 
 mpos.colat=90.-ala 
 mpos.elong=alo 
  
                y(1)=alt 
 y(2)=90.-ala 
 y(3)=alo 
 
****vecteur deplacement**** 
        
               sinthe=dsin(mpos.colat*deg) 
               dydx(1)=brho/bmod 
               dydx(2)=btheta/(bmod*mpos.radius) 
               dydx(3)=bphi/(bmod*mpos.radius*sinthe) 
  
                 x=newdl 
 n=3 
 htry=dlf 
 epss=0.01 
 yscale(1)=0.1 
 yscale(2)=0.1 
 yscale(3)=0.1 
 
* Runge-Kutta adaptive 
  
               call rkqs(y,dydx,n,x,htry,epss,yscale,hdid,hnext) 
 
**** new position**** 
         if(dir.eq.1)then 
            mpos1.radius= mpos.radius+you(1) 
            mpos1.colat=mpos.colat+you(2)/deg 
            mpos1.elong=mpos.elong+you(3)/deg 
        else 
            mpos1.radius= mpos.radius-you(1) 
            mpos1.colat=mpos.colat-you(2)/deg 
            mpos1.elong=mpos.elong-you(3)/deg 
        endif 
 
        newdl=xx 
        newalt=mpos1.radius 
        newlat=90.-mpos1.colat 
        newlon=mpos1.elong 
 
        call afield(newalt,newlon,newlat) 
        if(bmod.lt.bmir)then 
          okstep=1 
          oldbmod=bmod 
          newalt=newalt 
          newlat=newlat 
          newlon=newlon 
          newdl=newdl 
        else 
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          oldbmod=oldbmod 
          newalt=oldalt 
          newlat=oldala 
          newlon=oldalo 
          newdl=dlold 
          if (modf.eq.0)then 
           modf=1 
           call ajustep(newalt,newlon,newlat,htry) 
          endif 
        endif 
        return  
        end 
*********************************************$ 
 subroutine ajustep(alt,alo,ala,dlf) 
 
* this subroutine control the field line tracing at location close to the mirror point 
 
 double precision bopti,altopti,latopti,lonopti,newdlopt,integropti 
 double precision oldalt,oldala,oldalo,oldbmod,dlold 
 double precision newalt,newlat,newlon,newdl 
 double precision ecart,dlf,pas 
 double precision alt,alo,ala 
 double precision bmir,integr 
 double precision eps,re1 
 
 integer flag,modf,okstep,dir 
 
 COMMON/OPT/bopti,altopti,latopti,lonopti,newdlopt,integropti 
 COMMON/OLD/oldalt,oldala,oldalo,oldbmod,dlold 
 COMMON/NEWP/newalt,newlat,newlon,newdl 
 COMMON/STOP/flag,modf,okstep,dir 
 COMMON/MIRR/bmir,integr 
 COMMON/GLOB/eps,re1 
 
 okstep=0 
                ecart=100. 
                pas=dlf 
 if((dabs(oldbmod-bmir)).le.1.0E-008)then 
   flag=1 
 endif 
                do while(oldbmod.lt.bmir.and.(dabs(oldbmod-bmir)).gt.eps.and. 
     + pas.gt.0.01) 
                if(okstep.eq.0)then 
                  pas=pas/2. 
                 endif 
                 call step(newalt,newlon,newlat,pas) 
                 call integrand 
    okstep=0 
   if((dabs(oldbmod-bmir)).lt.ecart)then 
                     ecart=dabs(oldbmod-bmir) 
                     bopti=oldbmod 
                     altopti=newalt 
                     latopti=newlat 
                     lonopti=newlon 
                     newdlopt=newdl 
                     integropti=integr 

 66



                  endif 
 end do 
 if((dabs(oldbmod-bmir)).le.eps.or.pas.le.0.01)then 
                     flag=1 
                endif 
 return 
 end 
*********************************************************$ 
     double precision function integran(x) 
 
* subroutine of interpolation  in the table of a and b 

*  a is the length of the field line computed and b is the integrand  
mB

B
−1  

* This interpolation must be perform to solve the integral for I calculation dl
B
BI

a

a m
∫ −=

*1

1

1  

 
     double precision x,w 

     double precision var(3100000),inte(3100000) 
     integer xi,xf,xm,ns 
     integer i,dim 
     COMMON/INTER/var,inte 
     COMMON/NPAS/i,dim 
 
                 xi=0 
                xf=dim+1 
10 if(xf-xi.gt.1)then 
  xm=((xf+xi)/2)  
  if(x.gt.var(xm))then 
    xi=xm 
  else 
    xf=xm 
  endif 
 goto 10 
 endif 
 if(x.eq.var(1))then 
   ns=1 
 else if(x.eq.var(dim))then 
   ns=dim 
 else 
   ns=xi 
 endif 
                w=(inte(ns+1)-inte(ns))/(var(ns+1)-var(ns)) 
                 integran=w*(x-var(ns))+inte(ns) 
 return 
 end 
********************************************** 
       subroutine invarian 
 

* compute I   dl
B
BI

a

a m
∫ −=

*1

1

1  

 
        double precision var(3100000),inte(3100000) 
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        double precision xi,xf,epsi,invaria 
        integer i,dim 
        COMMON/INTER/var,inte 
        COMMON/INVA/invaria 
        COMMON/NPAS/i,dim 
        COMMON/END2/xf 
        external integran 
        epsi=0.0001 
        xi=var(1) 
        xf=var(dim) 
        invaria=dgauss(integran,xi,xf,epsi) 
        return 
       end 
******************************************************$ 
 subroutine derivs(x,y,dxdy) 
 
* compute derivative to introduce into the Runge Kutta subroutine 
 
 double precision alt,alo,ala,bmod,brho,btheta,bphi 
 double precision x,y(3),dxdy(3),colat,sinth 
 real*8 pi,deg,re,gmagmo,eclipt,geoid,uma 
 COMMON/FIELD/bmod,brho,btheta,bphi 
 COMMON/UC160/pi,deg,re,gmagmo,eclipt,geoid,uma 
 alt=y(1) 
 alo=y(3)  
 ala=90.-y(2) 
 call afield(alt,alo,ala) 
 colat=90.-ala 
                sinth=dsin(colat*deg) 
 dxdy(1)=brho/bmod 
 dxdy(2)=btheta/(alt*bmod) 
 dxdy(3)=bphi/(alt*bmod*sinth) 
 return 
 end  
**************************************************************** 
****************************************************** 
 subroutine rkck(y,dydx,n,x,h,yout,yerr) 
 COMMON/OUT/you 
 integer n,nmax 
 real*8 h,x,dydx(3),y(3),yerr(3),yout(3),you(3) 
 parameter (nmax=50) 
 integer i 
 real*8 ak2(nmax), ak3(nmax), ak4(nmax), ak5(nmax), ak6(nmax), 
     *   ytemp(nmax),a2,a3,a4,a5,a6,b21,b31,b32,b41,b42,b43,b51,b52, 
     *   b53,b54,b61,b62,b63,b64,b65,c1,c2,c3,c4,c5,c6,dc1,dc3,dc4,dc5,dc6 
 parameter (a2=.2,a3=.3,a4=.6,a5=1.,a6=.875,b21=.2,b31=3./40., 
     *   b32=9./40.,b41=.3,b42=-.9,b43=1.2,b51=-11./54.,b52=2.5, 
     *   b53=-70./27.,b54=35./27.,b61=1631./55296.,b62=175./512., 
     *   b63=575./13824.,b64=44275./110592.,b65=253./4096., 
     *   c1=37./378.,c3=250./621.,c4=125./594.,c6=512./1771.,  
     *   dc1=c1-2825./27648.,dc3=c3-18575./48384., 
     *   dc4=c4-13525./55296.,dc5=-277./14336.,dc6=c6-.25) 
 do i=1,n 
   ytemp(i)=y(i)+b21*h*dydx(i) 
 enddo 
 call derivs(x+a2*h,ytemp,ak2) 
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 do i=1,n 
   ytemp(i)=y(i)+h*(b31*dydx(i)+b32*ak2(i)) 
 enddo 
 call derivs(x+a3*h,ytemp,ak3) 
 do i=1,n 
   ytemp(i)=y(i)+h*(b41*dydx(i)+b42*ak2(i)+b43*ak3(i)) 
 enddo 
 call derivs(x+a4*h,ytemp,ak4) 
 do i=1,n 
   ytemp(i)=y(i)+h*(b51*dydx(i)+b52*ak2(i)+b53*ak3(i)+b54*ak4(i)) 
 enddo 
 call derivs(x+a5*h,ytemp,ak5) 
 do i=1,n 
   ytemp(i)=y(i)+h*(b61*dydx(i)+b62*ak2(i)+b63*ak3(i)+b64*ak4(i)+ 
     *     b65*ak5(i)) 
 enddo 
 call derivs(x+a6*h,ytemp,ak6) 
 do i=1,n 
  yout(i)=y(i)+h*(c1*dydx(i)+c3*ak3(i)+c4*ak4(i)+c6*ak6(i)) 
 enddo 
 do i=1,n 
  you(i)=yout(i)-y(i) 
 enddo 
 do i=1,n 
  yerr(i)=h*(dc1*dydx(i)+dc3*ak3(i)+dc4*ak4(i)+dc5*ak5(i)+dc6*ak6(i)) 
 enddo 
 return 
 end 
********************************************************************** 
 subroutine rkqs(y,dydx,n,x,htry,epss,yscale,hdid,hnext) 
  
* Runge Kutta subroutine see Numerical recipies in fortran 
 
                 integer n,nmax 
 real*8 epss,hdid,hnext,htry,xx,x,dydx(3),y(3),yscale(3) 
 parameter (nmax=50) 
 integer i 
 real*8 errmax,h,htemp,xnew,yerr(nmax),ytemp(nmax),safety,pgrow, 
     *    pshrnk,errcon 
 
 COMMON/OUT1/xx 
 
 parameter (safety=0.9,pgrow=-.2,pshrnk=-.25,errcon=1.89e-4) 
 
 h=htry 
1 call rkck(y,dydx,n,x,h,ytemp,yerr) 
 
 errmax=0. 
 n=3 
 do i=1,n 
   errmax=max(errmax,dabs(yerr(i)/yscale(i))) 
 enddo 
 errmax=errmax/epss 
 if(errmax.gt.1)then 
   htemp=safety*h*(errmax**pshrnk) 
   h=sign(max(dabs(htemp),0.1*dabs(h)),h) 
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   xnew=x+h 
   if(xnew.eq.x)pause 'stepsize underflow' 
   goto 1 
 else 
   if(errmax.gt.errcon)then 
     hnext=safety*h*(errmax**pgrow)  
   else 
     hnext=5.*h 
   endif 
   hdid=h 
   xx=x+h 
   do i=1,n 
    y(i)=ytemp(i) 
   enddo 
   return 
 endif 
 end 
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A.3 Fortran program to compute hmin 

 
        program main 
 
        implicit double precision (a-z) 
        INCLUDE 'structure.h' 
        integer max 
 
        COMMON/FIXED/fixlon,fixlat,fixalt 
        COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax     
        COMMON/ALTI/alt1 
        COMMON/BLCOR/fltarget,btarget 
        COMMON/minimum/x 
        COMMON/mom/moment 
        COMMON/UC140/ mint,mext,msum 
 
        RECORD /zimf/ mint 
        RECORD /zsun/ msun 
        RECORD /zemf/ mext 
 
        external paltmir 
C   
C       the parameters below are use in Brent' method 
C       see numerical recipes part 10.2 
C 
        ax=-180. 
        bx=-40. 
        cx=180. 
        tol=0.01 
        call initialise 
 
        open(11,file='altmigrf.res',status='unknown') 
 
C    loops over L and B values 
C    Bmin=mint.gmmo/L³ 
 
        do a=1.,5.1,.1 
        bb=mint.gmmo/a**3. 
        if (bb.ge.0.01)then 
                pas=-0.005 
        endif 
        if (bb.lt.0.01)then 
                pas=-0.0005 
        endif 
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        bbb=bb-pas 
        do b=0.35,bbb,pas 
        fltarget=a 
        btarget=b        
 
        faltmax=fltarget*6371.2d0*2. 
        fixalt=fltarget*6371.2d0 
 
 
C       search the altitude minimu as a function of longitude 
 
        test=brent(ax,bx,cx,paltmir,tol,xmin) 
        latm=platmir(x) 
 
*       write(11,9)a,b,latm,x,test 
        write(6,9)a,b,latm,x,test 
9       format(1x,5(F15.7)) 
        end do 
        end do 
        close(11) 
        stop 
        end 
******************************************* 
        subroutine initialise 
 
        double precision fltarget,btarget,alpha 
        double precision fixlon,fixlat,fixalt 
        double precision flatmin,flatmax,faltmin,faltmax 
        double precision year,param(10),moment 
        integer*4 kunit,kinit,ifail,kint,kext 
        real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30) 
        real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl 
        real*8 fvet,pvet,epsomeg,dltalt 
        real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3 
        real*8 epskm,epsrel 
        real*8 stplst,xclat 
        integer*4 kum533 
        character*32 lbint,lbext 
 
        INCLUDE 'structure.h' 
 
        RECORD/ZDAT/ mdate 
        RECORD/ZGEO/ mgeod, mpos 
        RECORD/ZVEC/ mb 
        RECORD /zimf/ mint 
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        RECORD /zsun/ msun 
        RECORD /zemf/ mext 
 
        COMMON/mom/moment 
        COMMON/FIXED/fixlon,fixlat,fixalt 
        COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax     
        COMMON/BLCOR/fltarget,btarget 
        COMMON/PITCH/alpha 
        COMMON/UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma 
        COMMON/UC140/ mint,mext,msum 
        COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet, 
     *    epsomeg,dltalt 
        COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel, 
     *   stplst,xclat,kmflg,kum533 
 
 
        DATA kunit,kinit/0,1/ 
        DATA kint,kext/0,0/ 
        DATA year,param,alpha/1985.0d0,10*0.0d0,90.0d0/ 
 
        flatmin=20.0d0 
        flatmax=-65.0d0 
        faltmin=6371.2d0*.9d0 
        fixlon=0.0d0 
        fixlat=0.0d0 
 
 
        mdate.iyear=1985 
        mdate.imonth=1 
        mdate.iday=1 
        mdate.ihour=0 
        mdate.imin=0 
        mdate.secs=0.0d0 
 
C      Initialize UNILIB library 
 
        CALL UT990 (kunit, kinit, ifail) 
 
C     modified values of several parameters in UNILIB common block  
 
        xbmin=0.00000001 
        kum533=-1 
        xrmin=0.1 
        xbmax=100000000. 
        xtmin=cos(6.*deg) 
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        prop=0.02 
        stepx=0.02 
 
C     set geomagnetic field models (internal) 
 
        CALL UM510 (kint, year, lbint, kunit, ifail) 
        IF( ifail .LT. 0 )STOP 
 
C      for centered and aligned dipole remove comments   
 
*       mint.norder    = 2 
*        mint.label     = 'Dipolar magnetic field          ' 
*        mint.coef(2,1) = mint.gmmo * 1.0d+05 
*        mint.coef(1,2) = 0.0d+00 
*        mint.coef(2,2) = 0.0d+00 
*        mint.elong     = 0.0d+00 
*        mint.colat     = 0.0d+00 
 
C      Julian day 
 
        CALL UT540(mdate) 
 
C     set geomagnetic field models (external) 
        CALL UM520 (kext, mdate.amjd, param, 
     +           lbext, kunit, ifail) 
        IF( ifail .LT. 0 )STOP 
        return 
        end 
************************************************** 
**** computation of the MacIlwain paramewter L**** 
        double precision function alcoor(alt,alon,alat) 
 
        double precision alt,alon,alat,alpha 
        double precision fbm,flm,fks,fs,fsm,fbeq 
        integer*4 nfmb,ifail,noprint,iifail 
        real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30) 
        real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl 
        real*8 fvet,pvet,epsomeg,dltalt 
        real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3 
        real*8 epskm,epsrel 
        real*8 stplst,xclat 
        integer*4 kum533 
 
        INCLUDE 'structure.h' 
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        RECORD/ZDAT/ mdate 
        RECORD/ZGEO/ mgeod, mpos 
        RECORD/ZVEC/ mb 
        RECORD /zimf/ mint 
        RECORD /zsun/ msun 
        RECORD /zemf/ mext 
 
        COMMON/PITCH/alpha 
        COMMON/FLAG220/iifail 
        COMMON /UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma 
        COMMON/UC140/ mint,mext,msum 
        COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet, 
     *    epsomeg,dltalt 
        COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel, 
     *   stplst,xclat,kmflg,kum533 
 
        nfbm=1 
        noprint=-1 
 
        mgeod.radius=alt 
        mgeod.colat=90.0d0-alat 
        mgeod.elong=alon 
 
C      for centered and aligned dipole remove comment   
*       gmagmo=mint.gmmo 
 
        CALL UL220(mgeod,alpha,nfbm,fbm,flm,fkm,fsm,fbeq,fs,ifail) 
        if(ifail.lt.0)then 
        iifail=ifail 
        print*,'ifail220 = ',ifail,'long = ',mpos.elong,mpos.colat,mpos.radius 
        endif 
 
        alcoor=flm 
        return 
        end 
******************************************************************** 
C   calculation of the geomagnetic field vector 
 
        double precision function afield(al,alo,ala) 
        implicit double precision (a-z) 
        double precision al,alo,ala,bpos 
        real*8 pi,deg,re,gmagmo,eclipt, geoid(3),uma(30) 
        real*8 xrmin,xbmin,xtmin,xbmax,epslon,epsfl 
        real*8 fvet,pvet,epsomeg,dltalt 
        real*8 prop,stepx,stpmin,umsq,upsq,uk2,uk3 
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        real*8 epskm,epsrel 
        real*8 stplst,xclat 
        integer*4 kum533 
        integer*4 ifail 
 
        INCLUDE 'structure.h' 
 
        COMMON/UC192/xrmin,xbmin,xtmin,xbmax,epslon,epsfl,fvet,pvet, 
     *    epsomeg,dltalt 
        COMMON/UC190/prop,stepx,stpmin,umsq,upsq,uk2,uk3,epskm,epsrel, 
     *   stplst,xclat,kmflg,kum533 
        COMMON /UC160/ pi,deg,re,gmagmo,eclipt,geoid,uma 
        COMMON/UC140/ mint,mext,msum 
        COMMON/BVAL/bpos 
 
        RECORD/ZDAT/ mdate 
        RECORD/ZGEO/ mgeod, mpos 
        RECORD/ZVEC/ mb 
        RECORD /zimf/ mint 
        RECORD /zsun/ msun 
        RECORD /zemf/ mext 
 
        mgeod.radius=al 
        mgeod.colat=90.0d0-ala 
        mgeod.elong=alo 
*********** evaluate magnetic feild*********** 
        CALL UM530 (mgeod,mb,ifail) 
        if (ifail.lt.0)then 
        print*,'ifailUM530 = ',ifail 
        endif 
        bpos=mb.dnrm 
        afield=mb.dnrm 
        return 
        end 
********************************************************************* 
************************************************************ 
C     this function reduces the alcoor function that depends on 
C     three variables into a function of only one variable, the altitude 
 
        double precision function alcalt(alti) 
        double precision alti 
        double precision fixlon,fixlat,fixalt 
        double precision fltarget,btarget,alpha 
        COMMON/FIXED/fixlon,fixlat,fixalt 
        COMMON/BLCOR/fltarget,btarget 
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        alcalt=(alcoor(alti,fixlon,fixlat)/fltarget)-1.0d0 
        return 
        end 
************************************************** 
C     this function reduces the afield function that depends on 
C     three variables into a function of only one variable, the altitude 
 
        double precision function afalt(alti) 
        double precision alti 
        double precision fixlon,fixlat,fixalt 
        double precision fltarget,btarget,alpha 
        COMMON/FIXED/fixlon,fixlat,fixalt 
        COMMON/BLCOR/fltarget,btarget 
 
        afalt=(afield(alti,fixlon,fixlat)/btarget)-1.0d0 
        return 
        end 
******************************************************************** 
C    This function allows to find the zero of an other function 
C     
 
        double precision function fzero(gfun,xmin,xmax,ep) 
        double precision function gfun 
        double precision xmin,xmax,ep,ecart,xup,xlow,xmean 
        integer max,nbr 
        xlow = xmin 
        xup = xmax 
        max = 1000 
        nbr = 0 
        ecart = dabs(xup-xlow) 
        do while ((ecart.gt.ep) .and. (nbr .lt. max)) 
                nbr = nbr + 1 
                xmean = (xup+xlow)/2. 
                var = gfun(xlow)*gfun(xmean) 
                if (var .lt. 0) then 
                        xup = xmean 
                else 
                        xlow = xmean 
                endif 
                ecart = dabs(xup-xlow) 
*               print*,xlow,xmean,xup,gfun(xlow),gfun(xmean) 
        end do 
        fzero = xmean 
        return 
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        end 
******************************************************************** 
C    This function allows to find the zero of an other function 
C    It is exactely the same function as the previous fzero one 
C    It's utility remains in the fact that fortran is not a redundant 
c    language 
 
        double precision function gzero(gfun,xmin,xmax,ep) 
        double precision function gfun 
        double precision xmin,xmax,ep,ecart,xup,xlow,xmean 
        integer max,nbr 
        xlow = xmin 
        xup = xmax 
        max = 1000 
        nbr = 0 
        ecart = dabs(xup-xlow) 
        do while ((ecart.gt.ep) .and. (nbr .lt. max)) 
                nbr = nbr + 1 
                xmean = (xup+xlow)/2. 
                var = gfun(xlow)*gfun(xmean) 
                if (var .lt. 0) then 
                        xup = xmean 
                else 
                        xlow = xmean 
                endif 
                ecart = dabs(xup-xlow) 
*               print*,xlow,xmean,xup,gfun(xlow),gfun(xmean) 
        end do 
        gzero = xmean 
        return 
        end 
******************************************************************** 
C    This function searches after the location where the computed B 
C    is equal to the B target given in the introduction part. 
 
        function dist(flat) 
 
        implicit double precision (a-z) 
        integer*4 nfmb,ifail,noprint,iifail 
        double precision fbm,flm,fks,fs,fsm,fbeq 
        INCLUDE 'structure.h' 
        COMMON/BLCOR/fltarget,btarget 
        COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax     
        COMMON/FIXED/fixlon,fixlat,fixalt 
        COMMON/ALTI/alt1 
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        RECORD/ZGEO/ mgeod, mpos 
        COMMON/FLAG220/iifail 
        external alcalt 
        external afalt 
 
        eps = 0.001 
        alpha=90. 
        pi=4.*atan(1.) 
        fixlat = flat 
 
C     alt1 is the altitude where B=Btarget 
 
        alt1 = fzero(afalt,faltmin,faltmax,eps) 
C 
C      
C     Compute the L value with the altitude where B=Btarget  
 
        bb = alcoor(alt1,fixlon,flat) 
 
C    check if computed value of L matches Ltarget  
 
        dist=bb/fltarget-1.0d0 
        return 
        end 
******************************************************************** 
C   At a given longitude, this function finds the latitude mirror point by  
C   searching the zero of the function dist(latitue) 
c   between two latitudes (-65 and 40 degrees) 
 
        function platmir(flon) 
 
        implicit double precision (a-z) 
        integer*4 nfmb,ifail,noprint,iifail 
        double precision fbm,flm,fks,fs,fsm,fbeq 
        INCLUDE 'structure.h' 
        COMMON/BLCOR/fltarget,btarget 
        COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax 
        COMMON/FIXED/fixlon,fixlat,fixalt 
        RECORD/ZGEO/ mgeod, mpos 
        COMMON/FLAG220/iifail 
        COMMON/ALTI/alt1 
        external dist 
        eps = 0.001 
        alpha=90. 
        pi=4.*atan(1.) 
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        fixlon = flon 
        lmin = -65. 
        lmax = 40. 
        platmir = gzero(dist,lmin,lmax,eps) 
        return 
        end 
************************************************ 
C   At a given longitude, this function finds the altitude mirror point by  
C   searching the zero of the function dist(latitue) 
c   between two latitudes (-65 and 40 degrees) 
 
        function paltmir(flon) 
 
        implicit double precision (a-z) 
        integer*4 nfmb,ifail,noprint,iifail 
        double precision fbm,flm,fks,fs,fsm,fbeq 
        INCLUDE 'structure.h' 
        COMMON/BLCOR/fltarget,btarget 
        COMMON/LIMIT/flatmin,flatmax,faltmin,faltmax 
        COMMON/FIXED/fixlon,fixlat,fixalt 
        RECORD/ZGEO/ mgeod, mpos 
        COMMON/FLAG220/iifail 
        COMMON/ALTI/alt1 
 
        external dist 
        eps = 0.001 
        alpha=90. 
        pi=4.*atan(1.) 
        fixlon = flon 
        lmin = -65. 
        lmax = 40. 
 
        p = gzero(dist,lmin,lmax,eps) 
        paltmir=alt1 
        return 
        end 
****************************************************$ 
C Brent's method see part 10.2 Numerical recipes 
 
        double precision function brent(ax,bx,cx,paltmir,tol,xmin) 
        integer imax 
        real*8 ax,bx,cx,paltmir,tol,xmin,cgold,eps 
        external paltmir 
        parameter (imax=100,cgold=.3819660,eps=1.0e-2)  
        integer iter 
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        real*8 a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm 
        common/minimum/x 
        a=min(ax,cx) 
        b=max(ax,cx) 
        v=bx 
        w=v 
        x=v 
        e=0. 
        fx=paltmir(x) 
        fv=fx 
        fw=fx 
        do iter=1,imax 
                xm=0.5*(a+b) 
                tol1=tol*abs(x)+eps 
                tol2=2.*tol1 
                if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3 
                if (abs(e).gt.tol1) then 
                        r=(x-w)*(fx-fv) 
                        q=(x-v)*(fx-fw) 
                        p=(x-v)*q-(x-w)*r 
                        q=2.*(q-r) 
                        if(q.gt.0.) p=-p 
                        q=abs(q) 
                        etemp=e 
                        e=d 
                        if(abs(p).ge.abs(.5*q*etemp).or.p.le.q*(a-x) 
     * .or.p.ge.q*(b-x)) goto 1 
                        d=p/q 
                        u=x+d 
                        if(u-a.lt.tol2.or.b-u.lt.tol2) d=sign(tol1,xm-x) 
                        goto 2 
                endif 
  1             if (x.ge.xm)then 
                        e=a-x 
                else 
                        e=b-x 
                endif 
                d=cgold*e 
  2             if(abs(d).ge.tol1) then 
                        u=x+d 
                else 
                        u=x+sign(tol1,d) 
                endif 
                fu=paltmir(u) 
                if(fu.le.fx)then 
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                        if(u.ge.x)then 
                                a=x 
                        else 
                                b=x 
                        endif 
                        v=w 
                        fv=fw 
                        w=x 
                        fw=fx 
                        x=u 
                        fx=fu 
                else 
                        if(u.lt.x)then 
                                a=u 
                        else 
                                b=u 
                        endif 
                        if(fu.le.fw.or.w.eq.x)then 
                                v=w 
                                fv=fw 
                                w=u 
                                fw=fu 
                        else if(fu.le.fv.or.v.eq.x.or.v.eq.w)then 
                                v=u 
                                fv=fu 
                        endif 
                endif 
        enddo  
  3     xmin=x 
        brent=fx 
        return 
        end 
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