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The problem of the dynamics of a plasma slab moving across a magnetic field is treated in the
framework of the kinetic theory. A velocity distribution function �VDF� is found for each plasma
species, electrons and protons, in terms of the constants of motion defined by the geometry of the
problem. The zero- and first-order moments of the VDF are introduced into the right-hand side term
of Maxwell’s equations to compute the electric and magnetic vector potentials and corresponding
fields. The solutions are found numerically. We obtain a region of plasma convection—the slab
proper—where the plasma moves with a uniform velocity, Vx=V0= �E�B /B2�x. At the core margins
two plasma “wings” are formed, each being the result of a pair of interpenetrated boundary
layers with different transition lengths. Inside these wings, the plasma velocity is not uniform,
Vx� �E�B /B2�x. It decreases from the maximum value obtained in the core to a minimum value in
the central region of the wings where a flow reversal is found with the plasma convecting in the
opposite direction to the core motion. There is also an asymmetry of the velocity gradient at the
borders of the core, which results in a corresponding asymmetry in the thickness of the wings.
Furthermore, it is found that the reversed plasma flow in the thinner wing is larger than that in the
broader wing. For a fixed direction of the magnetic field the two plasma wings interchange position
with respect to the center of the slab when the plasma bulk velocity reverses sign. © 2005 American
Institute of Physics.
�DOI: 10.1063/1.1943848�

I. INTRODUCTION

The study of plasma motion across a magnetic field has
direct application in many areas of plasma physics, from the
study of astrophysical and solar terrestrial plasma flows to
laboratory and tokamak experiments. In recent laboratory ex-
periments with plasma guns �see Refs. 1 and 2� or in confin-
ing devices such as tokamaks �see Refs. 3 and 4�, the propa-
gation of plasma density inhomogeneities �or blobs� turns
out to be an important factor for mass and energy transport.
On the other side, various models/mechanisms have been
proposed to represent the interaction between the solar wind
plasma inhomogeneities and the geomagnetic field that takes
place at the magnetopause �for a review see Ref. 5�. The
physical processes that govern this interaction are not yet
comprehensively modeled.

Significant advances in this field of investigation are due
to the numerical simulations based on the particle-in-cell
�PIC� method. They provide solutions for the plasma stream-
ing across the magnetic field in one6,7 or two dimensions.8

Neubert et al.9 and Nishikawa10 developed electrostatic PIC
codes that simulate the dynamics of a three-dimensional
�3D� plasma cloud across a magnetic field in vacuum as well

as in a background plasma. In these simulations the electron
to proton mass ratio ��=me /mp� is altered by orders of mag-
nitude in order to keep the problem tractable with modern
computer resources. The difficulties introduced in PIC simu-
lations by a too small value � are avoided in the case of an
electron-positron plasma11 where �=1.

Plasma kinetic theory has provided steady-state Vlasov
equilibrium solutions for boundary layers forming one-
dimensional tangential discontinuities �TDs�. Solutions for
TDs at the interface between stagnant plasma regions with
different temperatures and/or densities were found by
Sestero12 and Lemaire and Burlaga.13 One-dimensional TD
equilibrium solutions at the interface between moving
plasma regions were given by Sestero14 and Roth.15 Kinetic
solutions for one-dimensional TDs with both shears in the
magnetic field and plasma bulk velocity are described by
Roth,16 Roth et al.,17 and Lee and Kan.18

Echim19 found that the solutions proposed for steady-
state one-dimensional TDs can be used to construct steady-
state 2D kinetic solutions describing a nonuniform streaming
of a plasma across a magnetic field. In the following we
outline an application of this kinetic solution to the motion of
a collisionless plasma slab moving in an x direction perpen-
dicularly to background magnetic field lines. The external B
field, B0��0,0 ,B0�, is aligned along the positive z axis, asa�Electronic mail: echim@venus.nipne.ro

PHYSICS OF PLASMAS 12, 072904 �2005�

1070-664X/2005/12�7�/072904/11/$22.50 © 2005 American Institute of Physics12, 072904-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.113.86.233 On: Mon, 15 Dec 2014 20:00:58

http://dx.doi.org/10.1063/1.1943848


illustrated in Fig. 1. We consider 2D spatial variations in the
y-z plane �perpendicular to the slab motion� for plasma and
field parameters. Echim19 has shown that in this geometry
internal currents are aligned along the x axis, producing
therefore magnetic field perturbations only in the y-z plane.
These magnetic perturbations add to B0 to produce a total
magnetic field B= �0,By�y ,z� ,Bz�y ,z��= �0,by�y ,z� ,B0

+bz�y ,z��, where by�y ,z� and bz�y ,z� are the components of
the magnetic perturbations produced by the internal plasma
currents. The plasma slab considered here is parallel to the
external magnetic field and is infinitely long in the x and z
directions. It moves in the x direction with a bulk velocity
V= �Vx�y ,z� ,0 ,0� illustrated in Fig. 1.

The paper is organized as follows. Section II describes
the velocity distribution function �VDF� of each species
�electrons and protons�. The zero- and first-order moments
are analytically computed in terms of the electric potential
��y ,z� and the x component of the magnetic vector potential
Ax�y ,z�. The method to solve the steady-state Maxwell’s
equations is also discussed. Section III focuses on the nu-
merical results obtained in two cases: �A� a plasma blob
moving in the positive direction of Ox across a given exter-
nal magnetic field B0 and �B� a plasma motion in the nega-
tive direction of Ox across the same external magnetic field
as in case �A�. Section IV summarizes the results and out-
lines the aspects important for the general problem of plasma
motion across B fields.

II. KINETIC SOLUTION AND SELF-CONSISTENT
FIELDS

We assume that the slab motion is not self-sustained, i.e.,
an external mechanism drives the flow pattern V
= �Vx�y ,z� ,0 ,0� and maintains it in a steady state ��Vx /�t
=0�. Examples of external drivers sustaining plasma flows of
this type are the following: the inertia of excess momentum
plasmoids hitting the dayside terrestrial magnetosphere,20 the
initial momentum push imparted by plasma guns used in
laboratory experiments �see, for instance, Ref. 1�, or the cen-
tripetal force in curved geometry of tokamak.4 The variation
of plasma properties and fields with the x coordinate is ne-
glected in this study.

A. Solution of the stationary Vlasov equation

In the absence of collisions and for a time independent
problem, the VDF of each plasma component species f� sat-
isfies the stationary Vlasov equation:

v ·
� f�

�r
+

q�

m�

�E + v � B� ·
� f�

�v
= 0. �1�

In Eq. �1� the electromagnetic field on the left-hand side �lhs�
includes the internal plasma contribution determined by the
electric charge density �q�n�� and the current density �J�

=q�n�u�� of each plasma species �u� is the average velocity
of species ��; they are derived from the moments of f�.

The characteristic curves of Eq. �1� correspond to the
trajectories of the particle with charge q� and mass m� that
moves into the electromagnetic field given by the distribu-
tions E�r� and B�r�.21 Thus the solution of Eq. �1� can be any
positive, real function of the constants of motion. The solu-
tion of Eq. �1� has also to satisfy asymptotic boundary con-
ditions imposed at infinity or at large distances along the
parallelepipedal surface illustrated in Figs. 1 and 2.

The symmetry of the problem does not eliminate the
dependence of f� on any of the three components of the
velocity, vx, vy, vz. Therefore the solution must be given in
terms of the three constants of motion. Since the electromag-

FIG. 1. Schematic 3D plot of an ideal, rectangular, moving plasma slab.
Dashed arrows illustrate the distribution of the external magnetic field lines.
The 2D plot in front of the slab shows the plasma bulk velocity V�y�. The
slab is assumed infinite in x and z directions.

FIG. 2. Cross section normal to the direction of the plasma bulk velocity V.
The slab is parallel to the plane y=0. Plasma bulk velocity is illustrated by
circles having the diameter proportional to Vx�y ,z� �empty circles corre-
spond to zero velocity�. Dotted lines illustrate the distribution of the external
magnetic field B0.
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netic field does not depend on time, the electric field can be
derived from a scalar potential ��y ,z�, and the total energy
of the particle � is a constant of motion: H= �1/2�m��vx

2

+vy
2+vz

2�+q��.
Since the x coordinate is ignorable, the corresponding

component of the canonical momentum, px=m�vx

+q�Ax�y ,z�, is a constant of motion. In the special case when
the component of the magnetic vector potential, Ax, does not
depend on z �as in one-dimensional models of TDs�, the third
constant of motion is equal to pz.

12–17

Since the assumption that the z coordinate is ignorable is
not a priori justified, we will assume that the spatial varia-
tion of the electromagnetic field is smooth enough such that
the Alfven conditions22 are satisfied and rL���B��B, where
rL� is the radius of gyration of the particle �. Thus the mag-
netic moment of the particle, ��=m�w�

2 /2B, is an adiabatic
invariant; w� is the perpendicular component of the particle
velocity in the reference frame moving with the zero-order
drift velocity, UE= �E�B� /B2. Instead of pz we use, in the
more general 2D case, the magnetic moment �� as a third
�approximate� constant of motion. The magnetic moment has
been successfully used in previous kinetic models such as,
for instance, in the study of the radiation belt particles and in
the exospheric models of the solar and polar winds �see Ref.
23�.

To summarize, we consider two exact constants of mo-
tion: �i� the total energy H and �ii� the px component of the
canonical momentum. The third constant of motion is ap-
proximated by an adiabatic invariant: �iii� the magnetic mo-
ment. Any positive real function f��H , px ,�� is a solution of
the Vlasov equation �1�. This solution has to satisfy the
boundary conditions described below.

The solution is searched inside the parallelepiped shown
in Fig. 1 whose cross section is the rectangle �= �−y� ,
+y��� �−z� , +z�� illustrated in Fig. 2; y� and z� are finite
distances that are still large compared to the proton Larmor
radius. The plasma bulk velocity has nonzero values inside a
finite domain y� �y1 ,y2�, with �y1 ,y2�� �−y� , +y��; Vx�y ,z�
decreases to zero for y→ ±y� �see Fig. 2�. Note that, in this
paper, we do not impose any variation of Vx with the z co-
ordinate at the edges of the plasma slab.

The VDF satisfies the following boundary conditions:

lim
y→+y�

f� = f�1, lim
y→−y�

f� = f�1, �2�

where f�1 is an isotropic Maxwellian that corresponds to an
equilibrium stagnant plasma with density N�1 and tempera-
ture T�1:

f�1�px,�,H� = N�1� m�

2	KT�1
�3/2

e−H/KT�1. �3�

An admissible solution satisfying condition �2� is given be-
low:

f��px,�,H� = g��px�f�1�px,�,H� + h��px�f�2�px,�,H� ,

�4�

where the following functions were defined at y=0:

f�2�px,�,H� = N�2� m�

2	KT�2
�3/2

e−�H−pxV0+ 1
2

m�V0
2�/KT�2,

�5�

g��px� = 
�sgn�q���px − q�Ax1��

+ 
�− sgn�q���px − q�Ax2�� , �6�

h��px� = 
�sgn�q���px − q�Ax2��

− 
�sgn�q���px − q�Ax1�� , �7�

with 
 being the Heaviside step function and sgn the signum
function.

The function f�2 corresponds to a displaced Maxwellian
that describes a plasma whose average velocity in the Ox
direction is equal to V0. The truncation functions g��px� and
h��px� are defined such that in the �H , px� space the contri-
bution of f�2 to the VDF is limited to the region
where px� �q�Ax2 ,q�Ax1� with Ax1=−B0y1, Ax2=−B0y2 for
∀ z� �−z� , +z��. The two free input parameters y1 and y2

satisfy the inequality y1�0�y2 and specify the y coordinate
where the transition from moving to stagnant regime takes
place at the two sides of the slab. Since the reference system
is chosen such that the external magnetic field B0 is parallel
to z axis and positive Ax2�Ax1.

Thus these boundary conditions correspond to uniform
magnetic field at the left and right edges of the plasma slab:
B�y→−y��=B�y→ +y��=B0, equal to the external magnetic
field. The imposed boundary conditions for the plasma flow
and magnetic field at the left and right edges of the plasma
slab do not require any variation with the spatial z coordi-
nate. This will result in very slight variations of the different
plasma and field parameters in the z direction, as shown in
the forthcoming numerical results. Note also that the expres-
sion �4� for f��H , px� does not depend on �. Only the do-
mains of integration of f� in �H , px ,�� space depend on the
third constant of motion �.

B. Moments of the VDF

The moments of the VDF determine the electric charge
and current densities for each plasma component.24 The gen-
eral expression for the rst moment of the VDF is given by

Q�
rst�r,t� =	 	 	 vx

rvy
svz

t f�d3v . �8�

The moments will be computed by an integration in the
space of the constants of motion �H , px ,��. The charge den-
sity of each plasma component is equal to

�� = q�Q�
000 = 	

−�

+� 	
Hc�

+� 	
�c�

+�

f��H,px,��

�
D�vx,vy,vz�
D�H,px,��


d� dpxdH . �9�

The integration is carried out in the �H , px ,�� space. The
Jacobian of the transformation from the �vx ,vy ,vz� variables
to �H , px ,�� given by
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J = 
D�vx,vy,vz�
D�H,px,��


 =
�B0

2m�
2�� − �c�

�H − Hc�

has been introduced in Eq. �9�. The lower limits of integra-
tion, Hc� and �c�, are determined by the condition of acces-
sibility of particles coming from ±y�. The accessibility con-
ditions for various profiles of the electric potential have been
discussed in Refs. 23, 25, and 26. These conditions coincide
with the conditions for the Jacobian to have real values. They
were derived by Echim:19

Hc��px,�� = �B + �px − q�Ax�UE + q�� −
m�UE

2

2
, �10�

�c��px� =
m�

2B
� px − q�Ax

m�

− UE�2

, �11�

where UE= �E�B� /B2. The analytical integration gives the
following expression for the charge densities of electrons
��=e� and protons ��= p�:

����,Ax� = ��1��,Ax� + ��2��,Ax� , �12�

where the two functions ��1�� ,Ax� and ��2�� ,Ax� are speci-
fied in Appendix A.

The current density for each species is determined by the
first-order moment of the VDF. For a plasma flow parallel to
the Ox axis, Q010=Q001=0. Thus the only nonvanishing com-
ponent of the current is equal to

jx� = q�Q�
100 = 	

−�

+� 	
Hc�

+� 	
�c�

+� � px − q�Ax

m�
� f��H,px�

�
D�vx,vy,vz�
D��,H,px�


d� dH dpx. �13�

After analytical integration of �13� over the accessible do-
mains in the �H , px ,�� space, the current density can be writ-
ten as

jx���,Ax� = jx�1��,Ax� + jx�2��,Ax� , �14�

where the functions jx�1�� ,Ax� and jx�2�� ,Ax� are specified
in Appendix A.

C. Self-consistent electromagnetic potentials
and fields

The electromagnetic potentials satisfy the Maxwell’s
equations

�2� = −
1

0
�
�

��, �15�

�2A = − �0�
�

j�. �16�

The assumptions made on the symmetry of the sheared flow
�� /�t=0, � /�x=0� specify that the electromagnetic field dis-
tribution has to satisfy the following constraints:

E � �0,Ey�y,z�,Ez�y,z��, B � �0,By�y,z�,Bz�y,z�� .

�17�

Without loss of generality the magnetic field distribution �17�
can be obtained from a magnetic vector potential whose only
nonvanishing component is Ax�y ,z�. The Dirichlet boundary
conditions for Ax are specified in Table I giving a boundary
magnetic field equal to the external field, B0.

It is known that the plasma always tends to a state of
electric quasineutrality. A net electric charge is effectively
screened by collective effects at distances larger than the
Debye length �D=�0KT /2ne2. Since in this study we con-
sider flows whose characteristic scale length for spatial varia-
tion is much larger than �D, one can assume that the
quasineutrality condition is satisfied. The electric potential is
then computed from the condition that the total number of
electrons is everywhere equal to the total number of positive
charges:

�
�

�����y,z�,Ax�y,z�� = 0, �18�

with the charge density of species � given by Eq. �12�. Equa-
tions �16� and �18� together with the analytical expressions
of the moments �12�–�14� and the Vlasov solution �4� fully
determine the self-consistent solution of the electromagnetic
field.

The two equations �16� and �18� are discretized on the
uniform mesh defined for the domain �. The numerical so-
lution is computed by an iterative method: an initial guess
for Ax�y ,z� is introduced into the nonlinear algebraic equa-
tion �18� whose solution ��y ,z� is found by a bisection nu-
merical method at each point of the grid. This electric poten-
tial is then introduced into the discrete partial derivatives
equation �16� whose solution gives the magnetic vector po-
tential at all grid points. The latter equation is solved with a
finite difference preconditioned Gauss-Seidel method. Its so-
lution Ax�y ,z� is introduced in the quasineutrality equation
�18� and an updated electric potential ��y ,z� is found. The
procedure is repeated over and over until this iterative pro-
cess converges to the solution, i.e., when differences between
two consecutive steps become smaller and smaller at all grid
points. In the following section we show a numerical ex-
ample with plasma parameters typical for the region of inter-
action between the solar wind and the terrestrial magneto-
sphere. The convergence is reached after 15 iterations in both
the cases discussed below.

TABLE I. Boundary conditions for the plasma bulk velocity and the mag-
netic vector potential imposed on the borders of the rectangular domain �
shown in Fig. 2. Note that B0, the magnitude of the external magnetic field,
is an input parameter while VB�y� is self-consistently determined.

Boundary y=−y� y= +y� z=−z� z= +z�

Vx 0 0 VB�y� VB�y�
Ax B0y� −B0y� −B0y −B0y
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III. NUMERICAL SOLUTION: AN EXAMPLE

The numerical method described above has been applied
to a dimensionless form of Eqs. �12�, �14�, �16�, and �18�.
The scaling factors for lengths, densities, fluxes, bulk veloci-
ties, magnetic and electric fields, and potentials that are used
to normalize the equations are specified in Appendix B. The
lengths and the velocities are scaled, respectively, with rLp

the proton Larmor radius and VTp the proton thermal velocity
corresponding to the reference energy �KTref� of 1.5 eV. The
rationale of this scaling is that we are interested in solutions
for a plasma slab whose scale length is larger than rLp �i.e.,
we work in the so-called small Larmor radius beam approxi-
mation, see Ref. 27�.

The results shown in this section were obtained under
the cold plasma approximation, i.e., the asymptotic tempera-
ture of proton population is smaller than the asymptotic tem-
perature of the electron population within the plasma slab as
well as at large distances from it:

Tp1 � Te1, Tp2 � Te2.

Furthermore, in this first application we consider the case
when the slab plasma is warmer than the background plasma
�Tp1�Tp2�. The slab moves with a sheared convection ve-
locity Vx�y ,z� parallel to the Ox axis and perpendicular to the
external magnetic field B0, which is parallel to the Oz axis at
a large distance from the plasma slab. Furthermore, we re-
strict this numerical application to the case of a low-�
plasma.

A. Plasma slab moving with positive velocity: V0>0

In order to point out the effects due to the relative mo-
tion between the plasma slab and the background plasma, the
density �of electrons and protons� in the middle plasma slab
�Ni2=Ne2� is equal to that of the stagnant background plasma
�Ni1=Ne1� and take values generally encountered in the outer
layers of the terrestrial magnetosphere. We consider a mov-
ing plasma slab �V0= +55 km/s� with slightly greater tem-
peratures than the background plasma. The position of the
region of transition from moving to stagnant regime is deter-
mined by y2=−y1=100rLp. The magnitude of the external
magnetic field is equal to B0=100 nT. A summary of the
input parameters is given in Table II.

The plasma moves in the x direction and its bulk veloc-
ity is given by the center-of-mass speed:

Vx�y,z� =
mpQp

100��,Ax� + meQe
100��,Ax�

mpQp
000��,Ax� + meQe

000��,Ax�
, �19�

where mp and me are the proton and electron masses. Figure
3 shows the asymmetric distribution of Vx obtained inside the
rectangle �. The plasma has a roughly uniform bulk velocity
in the positive direction of the x axis within a core region
bounded by yLA−20rLp and yRA +40rLp and extending
all along z. The core’s width is approximately equal to 100
km. This sheared profile of the convection velocity corre-
sponds fairly well to the slab geometry described in the In-
troduction.

One notable feature of the self-consistent profile is the
formation of two wings or boundary layers at the edges of
the moving slab. The bulk motion of the plasma slab in the
positive direction of the x axis drives the background plasma
to move in the opposite direction, like a piston or a bar
impinging into a stagnant fluid. The profile of the plasma
bulk velocity is asymmetric with respect to the center of the
slab �y=0�. The boundary layer formed at the right-hand side
�rhs� of the slab �y�yRA� is much thinner than the layer at
the left �y�yLA�. The gradient of the plasma velocity is also

TABLE II. Boundary values, scaling factors, and their physical units, used as input parameters in the numerical solutions considered in the two cases
discussed in Sec. III. N1e=N2e and N1p=N2p.

B0

�nT�
�B

�nT�
N0

�cm−3�
N1e

�cm−3�
N1p

�cm−3�
Tref

�eV�
Te1

�eV�
Tp1

�eV�
Te2

�eV�
Tp2

�eV�
� V0

�km/s�
�D

�m�
rLp

�km�
��

�V�
�V

�km/s�
y�

�km�
z�

�km�
y1

�km�
y2

�km�

�A� 102 103 1 3 3 1.5 150 5 150 15 0.018 55 3.71 1.77 1 13.3 354 70 −177 +177

�B� 102 103 1 3 3 1.5 150 5 150 15 0.018 −55 3.71 1.77 1 13.3 354 70 −177 +177

FIG. 3. Case �A�—Distribution of the Vx /V0 plasma bulk velocity vs y /rLp

and z /rLp. Two “wings” are formed on both sides of the moving slab; the
thinner is localized on the rhs of the slab.
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stronger on the rhs of the slab. In the remainder these two
large-scale boundary structures will be called “plasma
sheaths” �PSs�.

Figure 4 shows the distribution of the electrostatic po-
tential given by the solution of the quasineutrality equation
�18�. In addition to the two PSs obtained for the distribution
of Vx�y ,z�, the distribution of ��y ,z� reveals smaller scale
structures. Indeed, the electric potential has two sharp jumps
at y=y1 and y=y2 within two microscale sheets embedded
into the two large-scale PSs. Note that y1 and y2 are different

from yRA, yLA. The former are input parameters of the Vla-
sov solution �4� and correspond to the centers of the two
regions of transition from moving plasma �described by f�2�
to stagnant plasma �described by f�1�; yRA, yLA are output
values obtained in the numerical solution of case �A�, delim-
iting the core region where the plasma bulk velocity is uni-
form.

The four different transition lengths discussed above are
also illustrated in Fig. 5 showing the ion density structure.
They can be divided into external pairs of embedded transi-
tion layers resulting from the interpenetration of the moving
plasma slab and the stagnant plasma. The first external pair
of transition layers occurs at the lhs of the moving plasma
slab. It is characterized by a smooth increase of the density
with a transition length on the order of the cold background
proton gyroradius—the PSs. It extends from y−190rLp to
y=yLA. This PS is interpenetrated by a thin current sheet
�CS� centered on y=y1 where the density decreases sharply
within a layer whose transition length is of the order of the
hot plasma slab electron gyroradius. The second external
plasma sheath/current sheet �PS/CS� pair occurs at the rhs of
the moving plasma slab. It is characterized by a smooth in-
crease of the density with a transition length on the order of
the hot plasma slab gyroradius—the right-hand side PS. It
extends from y=yRA to y=y2. It is followed by a sharp de-
crease of the density with a transition length on the order of
the cold background electron gyroradius �the right-hand side
CS�.

The different scale lengths obtained on both sides of the
moving plasma slab confirm the profiles of the classical so-

FIG. 5. Case �A�—Normalized number density of the protons. Since the
quasineutrality condition is satisfied, the same profile is obtained for the
electrons �ni=ne�.

FIG. 6. The response of ions and electrons in a TD depends on the sense of
the flow shear on either side of the layer �from the work of De Keyser and
Roth �Ref. 31��. In a unidirectional magnetic field B �pointing inside the
paper�, one sense of the shear flow V gives rise to an electric field E directed
away from the center of the layer �b�. E tends to pull the protons in the outer
fringes of the TD out of the layer �a� while the number densities of protons
�solid line� and electrons �dashed line� to the left of the TD gradually vanish
across the layer. The protons are indeed expected to penetrate furthest onto
the other side of the transition because of their larger gyroradius. Note that
in �a� the protons and electrons originating from the right side are not shown
�in the work of De Keyser and Roth �Ref. 31�, they are symmetric with
respect to the center of the layer�. �c� For the opposite flow sense, electrons
are pulled out of the layer.

FIG. 4. Case �A�—Distribution of ��y ,z�, the electric potential, solution of
Eq. �18�.
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lutions for 1D tangential discontinuities computed by
Sestero,14 Roth,15,16 Kuznetsova et al.,28 and De Keyser and
Roth.29–32 The variable scaling at the two sides is due to the
electric field inside the layer as illustrated by Fig. 6 �from the
work of De Keyser and Roth31� showing a schematic repre-
sentation of a TD layer formed by the interpenetration of two
identical plasma regions in relative motion across a unidirec-
tional magnetic field.

Between y=y1 and y=y2 the electric potential is decreas-
ing, which indicates an electric field in the direction of the
positive y axis �the same orientation as the convection elec-
tric field resulting from the geometry of Fig. 2�. The electric
field inside the plasma slab acts on the hot electrons of its
left boundary like the electric field acts on the electrons of
the boundary having the shear flow orientation illustrated in
part �c� of Fig. 6. Similarly, the electric field inside the
plasma slab acts on the hot protons of its right boundary like
the electric field acts on the protons of the boundary having
the shear flow orientation illustrated in part �b� of Fig. 6. For
y�y2, there is a reversal of the electric field in the back-
ground plasma left backwards in the negative x direction. For
y�y2 the electric field is directed toward the inside of the
plasma slab �in the negative y direction� as in case �c� of Fig.
6.

The cold electrons of the right background plasma �mov-
ing backwards� are pulled toward the outside of the moving
plasma slab. Note that De Keyser and Roth29 predicts that if
the shear flow is too strong, the kinetic energy of the par-
ticles �protons for one sense of the shear flow, electrons for
the other sense� is not sufficient to overcome the electrostatic
energy barrier and no equilibrium is possible. Because of the
smaller electron gyroradius, a larger shear flow is needed to
set up an energy barrier for the electrons that prohibits equi-

librium. This explains why the backward motion of the back-
ground plasma is larger at the right edge of the plasma slab
than at the left edge.

In Fig. 7 are shown the results from computations per-
formed for a finer grid, limited to the left boundary layer:
y� �−y� ,0�. The “jump” of the potential noticed at y=y1 is
resolved and shown in the upper panel. The upper curve
�symbol “�”� of the middle panel of Fig. 7 illustrates the
profile of ne�y� and np�y� inside the lhs wing. Note that the
curves formed by the symbols “�” and “�” correspond,
respectively, to the distributions of electrons �ne1� and pro-
tons �np1� originating from outside the slab, on the lhs at y
=−y�. The densities of the electrons and protons inside the
slab are not shown but are equal to ne−ne1 and np−np1. The
sharp variation in the electrostatic potential occurs at the
right edge of the first transition layer, which scales with the
cold background proton gyroradius. The width of the thin
sheet is proportional to the cold electron Larmor radius from
the stagnant regime �characterized by ne1�. A similar elec-
tronic structure is found at y=y2 �not shown�.

Both microscale layers coincide with the region of tran-
sition of the electron population from the stagnant regime
�characterized by the electron density ne1� to the moving re-
gime �characterized by the electron density ne2�. A thermal
proton incident from the left stagnant plasma that attempts to
penetrate into the moving plasma slab has to traverse a re-
gion where the electric field repels it: this region constitutes
an energy barrier. The height of the energy barrier is propor-
tional to �i� the distance over which the background proton
�np1� density vanishes �with the cold proton Larmor gyrora-
dius as the transition length� and �ii� the electric field �which
in turn depends on the shear flow�.

In the presence of the magnetic field B, the electric field,
E=−��, sustains an electric drift �or convection velocity�

FIG. 7. Case �A�—Detail distributions of several plasma parameters inside
the plasma sheath on the left-hand side for z=0: �a� upper panel—
normalized electric potential; �b� middle panel—normalized density �ni and
ne are the total number densities of the ions and electrons; ni1 and ne1 are the
partial ion and electron densities of the lhs stagnant population�; �c� lower
panel—normalized plasma bulk velocity.

FIG. 8. Case �A�—Distribution of UE the electric drift velocity, computed
from the solutions of Eqs. �16� and �18�. Note that Vx the plasma bulk
velocity is approximately equal to UE only in the center core of the slab.
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which is equal for the electrons and ions, UE= �E�B� /B2.
The drift velocity is precisely the ideal magnetohydro dy-
namics �MHD� convection velocity. For case �A� the nonva-
nishing component of the drift velocity, UEx, is shown in Fig.
8. Note that Vx, the bulk velocity of the core of the plasma
slab, is almost equal to the convection velocity UE. This is
not true inside the small-scale current sheet at y=y1. Indeed
the lower panel of Fig. 7 indicates that the magnitude of the
convection velocity UEx is drastically larger than the magni-
tude of the plasma bulk velocity inside the microscale CS. It
is clear that inside this layer the MHD is badly violated. The
increase of the electron pressure inside this microscale sheet
produces a sharp gradient of the electric potential. This en-
hancement of E is associated with a strong electron current
intensity and bulk speed of electrons. However, the bulk ve-
locity of the more massive protons is only slightly changed
by this rather localized electric field enhancement.

The total current density jx �not shown� also peaks
sharply inside the thin sheet of the external pairs of interpen-
etrated boundary layers. This diamagnetic current layer pro-
duces a slight perturbation of the external magnetic field
�less than 10%, see Fig. 9�, since the value of � is very small,
�=1.81�10−2. Also note the slight variation of the magnetic
field with z close to the lower and upper borders.

B. Plasma slab moving with negative velocity: V0<0

A second set of numerical results �case �B�� is obtained
by changing the sign of the parameter V0 in Eq. �5� as well as
in the expressions �A1�, �A2�, and �A5�, �A6� of the zero-
and first-order moments. All the other parameters keep the
values used in case �A� �see Table II�.

The distribution of the plasma bulk velocity, obtained by
the iterative process described above, is shown in Fig. 10; it

takes a uniform but negative value, equal to V0=−55 km/s,
inside of a core confined in the region limited by yLB

=−40 rLp and yRB=20rLp and extending all along the z direc-
tion. As in case �A�, the slab proper has two lateral wings
within which the plasma bulk velocity changes sign. Note
also that the width of the core, �=yRB−yLB, has the same
value �60rLp� as in case �A�.

The PS with a sharper variation of Vx now forms at the
lhs of the slab, while on the right-hand side a thicker bound-

FIG. 11. Case �B�—Distribution of ��y ,z� the electric potential obtained
from Eq. �18�.

FIG. 9. Case �A�—Total magnetic field B; the external field is slightly
altered by the diamagnetic currents carried by the electrons and protons in
the ion sheaths and electron sheets.

FIG. 10. Case �B�—Distribution of Vx /V0, the plasma bulk velocity. The
core of the slab moves with uniform, negative velocity. Two wings form at
the edges of the moving slab where the plasma moves in the direction
opposite to the core.
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ary layer develops with a much smoother gradient for the
bulk velocity Vx. This is a direct consequence of the reversal
of the sense of the flow which fixes the sign of the electric
field as illustrated schematically in Fig. 6.

In case �B� the electrostatic potential first decreases to a
minimum value and then has a positive maximum, as shown
in Fig. 11. Its values on the two sides of the rectangle are
��±y��=0, as expected. The electric field determines an
electric drift velocity UE �not shown� whose value is almost

equal to Vx, inside the core. As in case �A�, the potential has
a sharp gradient within two thin sheets in y=y1 and y=y2.

The total number density of both electrons and protons
has again two peaks shown by Fig. 12. The density peak now
occurs close to y1=−100rLp while in case �A� the maximum
was obtained close to y2= +100rLp. By comparison with case
�A� one can note the reversal in the positions of these two
external boundary layers. The sharpest slope of the plasma
density now takes place on the lhs of the moving slab, while
in case �A�, when the plasma moved in the positive direction,
it is found on the right-hand side. As expected, Fig. 12 is the
image with respect to the center of the plasma slab of the
density structure obtained for V0�0 and illustrated in Fig. 5.

A more closer look of the thin PS formed on the left-
hand side is displayed in Fig. 13. The upper panel illustrates
the variation of the electric potential with y at z=0 �the pro-
file is virtually the same at all z�. The density of cold elec-
trons and protons �ne1 and np1� from the left region of the
background plasma as well as the total charge density �ne

=np� are illustrated in the middle panel of Fig. 13. The sharp
gradient of the density in y=y1 corresponds to a localized
gradient of the electric potential, as in case �A�. Note how-
ever that the scale length of the left-hand side PS of case �B�
is smaller than that of case �A�.

For −105�y /rLp�−95 the electric field in the transition
layer of the background plasma, moving backwards in the
positive direction of the x axis, is directed toward the inside
of the moving plasma slab as in case �c� of Fig. 6. The
electrons are pulled out of the left transition layer by the
inward directed electric field. A cold electron incident from
the left stagnant plasma has to overcome a strong electro-
static energy barrier. This produces the sharp increase of the
total density between y /rLp−105 and y /rLp−95 illus-
trated in the middle panel of Fig. 13. To maintain charge
neutrality hot electrons from the moving plasma slab �not
shown� are also pulled toward the outside of the slab to neu-
tralize the cold protons �ni1� pulled toward the inside of the
slab between y /rLp−95 and y /rLp−40. The lower panel
of Fig. 13 shows that inside the microscale sheet, the drift
velocity UE peaks to higher values than the bulk velocity Vx

as in case �A�.

IV. DISCUSSION AND CONCLUSIONS

One-dimensional kinetic TD models predict the response
of ions and electrons in a tangential discontinuity to depend
on the sense of the shear flow on either side of the layer that
leads to a variation of the layer’s width with the sense of the
shear. For similar configurations, hybrid particle simulations
by Cargill and Eastman33 showed that the length scale of the
transition in the bulk velocity profile, and, correspondingly,
in the density profile, changes with the direction of the flow.

In this paper we have derived a kinetic model for the
dynamics of a plasma slab moving across the magnetic field
into a colder stagnant plasma. We obtain a region of plasma
convection—the slab proper—surrounded by a stagnant
plasma. Inside the slab we identify a core where the plasma
moves with almost a uniform velocity, Vx=V0= �E�B /B2�x.
On both sides of the core two wings or PSs, each being the

FIG. 12. Case �B�—Normalized number density of the protons. Since the
quasineutrality is satisfied, the same density is obtained for the electrons.

FIG. 13. Case �B�—Detail distribution of several plasma parameters inside
the plasma sheath on the lhs for z=0: �a� upper panel—normalized electric
potential; �b� middle panel—normalized density �ni and ne are the total
proton and electron densities; ni1 and ne1 are the proton and electron densi-
ties of the stagnant population on the lhs�; �c� lower panel—normalized
plasma bulk velocity.
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result of a pair of interpenetrated boundary layers, are
formed. In these wings the plasma velocity is not uniform
but sheared. It decreases from the maximum value V0 as-
sumed in the core to a minimum value in central region of
the wings. In our model the plasma bulk velocity tends to
zero for y→ ±y�. The width of the central core depends on
the two input parameters y1 and y2 as well as on the tem-
peratures of the stagnant species, Te1 and Ti1. Moreover,
within the wings there is a flow reversal where the plasma is
convecting in the direction opposite to the motion of the
core. Our results show that, like in hydrodynamical piston
flows, the forward motion of a plasma element �a slab in this
case� drives the backward motion of the adjacent layers.

The distributions of plasma and fields are not the same
on the left-hand side and on the right-hand side. One side the
PS is thinner and has an embedded CS within which sharp
variation of the plasma parameters have been obtained. On
the opposite side a thicker PS is formed with a smoother
transition profile. It also embeds a small-scale current sheet
with sharp variations of the potential and density. In case �A�
of a core moving with a positive velocity �V0�0�, the
sharper transition is formed on the right-hand side �y=y2�.
When the sign of the core’s velocity is changed �V0�0� but
the direction of the external magnetic field is kept the same,
the two PSs and their interpenetrated CSs interchange posi-
tion. Our kinetic model demonstrates that the distributions of
the plasma density, bulk velocity, and electromagnetic fields
inside a moving slab depend on the sign of the velocity with
respect to the external magnetic field. Similar results were
already found by Sestero,14 Roth,15,16 Kuznetsova et al.,28

and De Keyser and Roth29–32 in their 1D kinetic models of
tangential discontinuities. These authors show that the width
of the transition layer formed at the interface between mov-
ing and stagnant plasmas depends on the sign of the
asymptotic velocity, an effect due to the electric field.

The electric field is enhanced inside the thin current
sheets embedded into the wings of the moving plasma slab.
Strong electric currents are also present. Nevertheless, the
bulk velocity of the plasma as a whole is slightly changed
inside the CSs as the resulting electric current flow is mainly
of electronic nature �see the lower panels of Figs. 7 and 13�.
This demonstrates that strong perpendicular electric fields do
not necessarily drive a strong cross-B plasma flow �or jet-
ting�, while strong transversal plasma flow always corre-
spond to an enhanced perpendicular �convection� electric
field.20,34 Similar conclusions were reached recently in the
framework of the MHD approximation of plasma physics.35

Spatial gradients of high-speed flows directed Earthward
in the midtail plasma sheet have recently been determined by
Nakamura et al.36 using multipoint observations from the
Cluster spacecraft. It was observed that the velocity gradient
at the duskward edge of a flow tends to be sharper than that
at the dawnward edge. This observation confirms the com-
putation illustrated in Fig. 10 �case �B�� where the geometry
of the flow and the magnetic field is the same as that ob-
served by the Cluster spacecraft. Note, however, that Naka-
mura et al.36 have interpreted their observations as the pos-
sible result of an asymmetry in the magnetosphere-
ionosphere coupling process associated with the flow.

The kinetic solution found for the convection of a
plasma slab across the magnetic field shows that the forward
plasma motion drives a backward drift of the background
plasma. The boundary layers formed at the interface between
moving and stagnant plasma embed microscale structures
and are not symmetrical. They interchange position when the
direction of slab’s motion is reversed. The model gives quan-
titative assessments of the plasma parameters and fields that
are suitable for cross checking with laboratory and in situ
space plasma investigations.
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APPENDIX A: ANALYTICAL MOMENTS

In order to compute the zero-order moment of the VDF
given by Eq. �4� we integrate separately the two terms over
the domains of the �H , px ,�� space accessible to particles
that are passing at y= ±y�. The analytical expressions of the
density are given by

��1��,Ax� =
q�N�1

2
e−�q��/KT�1� �erfc����Ax,T�1,Ax1��

+ erfc�− ���Ax,T�1,Ax2��� , �A1�

��2��,Ax� =
q�N�2

2
e−�q��/KT�2� e�q�AxV0/KT�2�

��erfc����Ax,Ax2�� − erfc����Ax,Ax1��� .

�A2�

The functions ���Ax ,T ,c� and ���Ax ,c� are defined by

���Ax,T,c� = �q��
Ax − c

�2m�KT
, �A3�

���Ax,c� = − ����Ax,T�2,c� + sgn�q��
m�V0

�2m�KT�2
� .

�A4�

N�1, T�1, N�2, T�2 correspond to the asymptotic density and
temperature of the stagnant �index “1”� and moving plasma
slabs �index “2”� respectively, erfc is the complementary er-
ror function.37

The first-order moment of the VDF is equal to the flux of
particles which is proportional to the electric current density
carried by these charged particles. Only the x component is
different from zero. After integration of the VDF specified in
Eq. �4�, one finds that

jx�1��,Ax� = J�1e−�q��/KT�1�

��e−����Ax,T�1,Ax1��2
− e−����Ax,T�1,Ax2��2

� ,

�A5�
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jx�2��,Ax� = J�2e−�q��/KT�2� e�q�AxV0/KT�2�

��V�0
* erfc���Ax,Ax2�� + sgn�q��e−���Ax,Ax2��2

− V�0
* erfc���Ax,Ax1��

− sgn�q��e−���Ax,Ax1��2
� , �A6�

with

J�1 = − �q��N�1� KT�1

2	m�

,

V�0
* =� 	m�

2KT�2
V0,

J�2 = q�N�2� KT�2

2	m�

.

APPENDIX B: SCALING FACTORS

The equations solved numerically in Sec. III were nor-
malized. The general rule of normalization is given by

P = �PP*,

where P is the physical quantity, �P is the dimensional scal-
ing factor, and P* is the corresponding nondimensional quan-
tity.

The electric potential is scaled with the potential neces-
sary to accelerate an electron to the reference thermal energy
KTref:

� = ���*, �� =
KTref

e
.

The magnetic vector potential is scaled with

Ax = �Ax
Ax

*, �Ax
=

�2meKTref

e

and the magnetic induction with a reference magnetic field
�B:

B = �BB*.

The electric current is scaled with the current carried by elec-
trons moving with the thermal velocity and having the den-
sity N0:

j = � jj
*, � j = �eN0��2KTref

me
.

The velocity is scaled with the proton thermal velocity

V = �VV*, �V =�2KTref

mp
.

We have also defined the nondimensional quantities

� =
me

mi
, �e =

Tref

Te1
, �e2 =

Tref

Te2
,

�i =
Tref

Tp1
, �i2 =

Tref

Tp2
.

Tref is a reference energy equal to 1.5 eV in the computations
discussed in Sec. III.

The spatial coordinate perpendicular and parallel to the
magnetic field are both scaled with the proton Larmor radius:

y = �yy
*, �y = rLp =

�2mpKTref

eB
,

z = �zz
*, �z = rLp =

�2mpKTref

eB
.
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