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ABSTRACT

This paper addresses the problem of performing time series analysis on-board a spacecraft, where the number of constraints is much bigger
than for applications running in regular (i.e., ground-based) environments. An objective of modern spacecraft technologies designed for
space exploration is to perform on-board data processing tasks, in order to increase the amount of data available for scientific analysis. Field
Programmable Gate Array (FPGA) devices are considered as good candidates for hardware implementations of such systems. In order to
optimize the usage of on-board resources, FPGAs share their resources between several digital signal processing (DSP) algorithms. In this
paper, we describe the design and implementation of such an optimized design where two DSP algorithms are implemented on the same
FPGA: (1) the power spectral density and (2) the multiscale probability distribution functions. The entire implementation process is described
in detail, including a discussion about the main architectural choices. The proposed solutions focus on optimization of area, speed, and power.
The tests performed, on both synthetic and real data, demonstrate the feasibility of our approach and constitute the first step toward porting
the design on space-grade FPGAs.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119231

I. INTRODUCTION paper is to cumulate on a single device/chip several functions
adapted for the analysis of a specific dataset. The goal is to pro-

The increasing performance of scientific instruments qualified ~ vide a tool able to extract a maximum amount of information

for space flight is challenging for the integration of these instru-
ments on-board spacecrafts. Moreover, the exponential growth of
the amount of data recorded on-board is not matched by a corre-
sponding increase in the capabilities to send all these data to the
ground. Therefore, in order to take full benefit of the increased
performance of the scientific experiments, additional efforts are
needed to design and test smart devices able to perform key tasks
for on-board data analysis. One key principle discussed in this

from the data with minimized expenses of energy and computing
resources.

The feasibility of our goals was already demonstrated in a pre-
vious paper,’ where we developed a Field Programmable Gate Array
(FPGA)-based solution to compute probability distribution func-
tions (PDFs) of fluctuations. The solution was proposed in two
implementation variants in the idea that they will be combined with
other space specific applications of the same class.
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Data variability is generally closely linked to the dynam-
ical behavior of systems/environments investigated by in situ
techniques. Our interest focuses mainly on variability of space
plasma parameters, such as the magnetic field, the bulk speed,
and the density, measured in situ in the solar wind and/or
the terrestrial magnetosphere. These parameters help characteriz-
ing the solar-terrestrial interactions and space weather phenom-
ena. Several important data variability descriptors are provided
by time series analysis (TSA) or digital signal processing (DSP)
techniques.

The Power Spectral Density (PSD) reveals how the energy is
distributed over the frequency range by decomposing the signal in
eigenvectors represented by trigonometric functions. This represen-
tation is valid under the assumption of stationarity. The multiscale
Probability Density Functions (PDFs) describe the statistics of fluc-
tuations and do not rely on a specific representation of mathematical
functions. However, its accuracy depends heavily on the number of
data samples. The description of data provided by the two meth-
ods is complementary, although PSD is seen as a low order analysis
compared to PDFs. Both methods provide data variability descrip-
tors under the form of a reduced dimension set, the PSD and the
PDF, compared to the original raw data series. Thus, these methods
can be seen, in a broader sense, as a data compression tool. There-
fore, such an on-board data analysis tool is crucial when the local
resources preclude sending the entire dataset to the ground. This is
why the paradigm of edge computing becomes relevant for satellite
data analysis.

Edge computing is an emerging paradigm that becomes more
and more used in the scientific community. According to Ref. 2,
edge computing is a method for optimization of computing sys-
tems “by taking the control of computing applications, data, and
services away from some central nodes to the other logical extreme
(the «edge») of the network of interconnected computing systems.”
In the context of space applications, this means that the control is
transferred from the ground center to the computers on-board the
spacecraft.

In Ref. 3, it is shown that the main benefits of edge com-
puting come from the optimization objectives that can be reached
easier than by using classical computing paradigms, especially the
delay and execution time, energy and power, and scalability and
availability.

Edge computing can be successfully applied in a wide variety of
fields. In our context, end-to-end delay, communication cost, and
data loss are the most important performance criteria. The con-
cept of in situ processing can bring many solutions to improve per-
formance. It is used in various fields such as big data,” memory
systems,” fog computing,’ and high-performance computing.”

The idea of edge computing is straightforward: to “push” com-
putations onto the satellite end and send to the ground only a syn-
thesis of the data processed in the outer space that describes how-
ever key dynamic features of the raw data. As a result, a series of
advantages arise:

o the on-chip hardware will be lighter, which is a key element
in the context of space applications;

o the total power consumption for performing the computa-
tions will be orders of magnitude less than in the case of a
classical microprocessor-based implementation;
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o the total power consumption for transmitting data to the
ground will be significantly reduced, since much less data
are transmitted;

o the size of the physical system will be significantly smaller,
making it possible to be embarked in small satellites such as
CubeSats.

As our concern is plasma survey, there are a few DSP algo-
rithms relevant for the analysis of data samples gathered by various
sensors (e.g., magnetometers, variometers, and wave analyzers). Due
to high performance or efficiency requirements, these analyzers are
often implemented in hardware and it is preferable that an FPGA
chip placed on a satellite performs as many analyses as possible.
Moreover, recent space plasma missions use FPGAs as the main
technology for the electronic blocks and computing processing units
that serve the scientific instruments.™”

The question is: is it possible to run those DSP algorithms in
FPGA chips instead of microprocessors? This paper presents solu-
tions for implementing at least two DSP algorithms [probability dis-
tribution function (PDF) and power spectral density (PSD)] in the
same FPGA chip and discusses the main architectural choices that
make this possible.

Space applications need to be run on qualified hardware that
is radiation-tolerant. From the developer’s point of view, the logic
structure is identical on a regular off-the-shelf FPGA chip and on a
space-grade one. Nevertheless, the logic components are physically
triplicated in a space tolerant FPGA, in a way that is transparent for
the developer and that increases the reliability. The space radiation
unexpected events span a large range, like highly energetic particle
impacts on the chip, that can alter the value of parts of the design,
like bits stored in memory, programmable interconnection points
(PIPs), etc.

We tested our solution in a laboratory, on regular FPGA chips,
as a first step toward prototyping a space-qualified solution. The
main novelty at this step is the conceptual and algorithmic design
of computations typical for the algorithms involved. The solution
can later on be ported to space-qualified chips.

The rest of this paper is organized as follows: Sec. II presents a
theoretical background of the two DSP algorithms mentioned above.
It also includes a survey of previous work done in this field. The pro-
posed architectural solutions are presented in Sec. ITI, while Sec. IV
presents the corresponding experimental results and measurements.
Conclusions and future work are presented in Sec. V.

II. BACKGROUND AND PREVIOUS WORK
A. Power spectral density

Spectral analysis is one of the most popular approaches to
investigate data variability. It uses the decomposition in trigonomet-
ric (eigen)functions provided the signal x(t) is stationary,

N-1 i
Xy = Z xjexp(—ilk)At. (1)
=0 N

Equation (1) provides the expression for the Fourier compo-
nent X at frequency f; = ﬁ of a signal, xj, discretized in N sam-
ples separated by the same time interval At (uniform sampling).

It is a tool that proved its usefulness in many fields of science.
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The technique became affordable and widely used with the intro-
duction of the Fast Fourier Transform (FFT) algorithm, which can
be implemented in various types of data processing units. FFT is cur-
rently designed in virtually all programing languages and used by
scientists and engineers.

We are interested in the implementation of an algorithm that
estimates the power spectral density to be implemented in an FPGA
device. A power density function is the distribution of variance
(mean square value) of a time series over frequency.'’ In practice,
one needs to estimate the mean square Fourier component for an
infinitesimal frequency interval. Several strategies can be employed
to estimate the PSD with the Fourier approach; here, we use the
simplest one, the periodogram,

2At
N

N+1

S(n) = X[ k=0,..., > )

where Xj is determined with an FFT algorithm following (1). The
frequency interval, [0, 3At], is broken into N/2 parts such that the
PSD frequency resolution is Af = 3. Although the estimation of
the PSD with (2) is rather coarse, it satisfies the scope of our design,
i.e., a robust and rapid procedure to estimate the spectral properties
of the signal when rather limited computing resources are available.
We do not apply any windowing procedure prior to FFT, nor do we
average several PSDs as in the Welch algorithm to reduce the PSD
noise (see Ref. 11). The main task we assume here is to include in the
same FPGA device the algorithms able to compute simultaneously
estimations of the multiscale PDFs and PSD.

Fourier analysis is widely applied in space data analysis for time
series, images, etc. Although FPGAs have increasingly prominent
roles in the design of electronics blocks of state-of-the-art plasma
missions (see, e.g., Ref. 12), to our knowledge, there is no such FPGA
designed to perform PSD estimations on-board the spacecraft.

Note also that data gaps are known to generate many undesir-
able side effects when estimating the spectral properties of a signal
(see, e.g., Ref. 13). Thus, the final design should include additional
logic to tackle these effects. This problem is outside the scope of the
present paper, and it will not be discussed further.

B. Probability distribution functions

The concept of the probability distribution function is funda-
mental for the statistical description of data variability and, in a more
general sense, for understanding the dynamics of complex systems
such as space plasmas.'* It offers a complete image of the statistics
of “events” from small amplitudes to extremes, provided the num-
ber of samples is large enough such that the “wings” of the PDFs are
reasonably well sampled. Indeed, the later give a quantitative mea-
sure on the occurrence rate of “rare” or “extreme” events (see, e.g.,
Ref. 15). The definition of an “event” is of course depending on the
quantitative measure associated with the relevant physical quantity
(e.g., velocity in the case of neutral fluid turbulence and magnetic
field for space plasma turbulence). In our studies, we adopt a dif-
ferential measure, as explained below, and shall check its scaling
properties.

An accurate estimation of PDFs from experimental data is
not straightforward, as discussed by Ref. 16. Several algorithms are
available; here, we adopt the one that is easier to implement due
to its relatively reduced mathematical complexity—the histogram
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based method. This approach was applied in several studies of space
plasma variability from in situ data (e.g., Refs. 17-20).

The mathematical kernel for the computation of the multi-
scale PDFs is available from a data analysis toolbox, the Integrated
Nonlinear Analysis (INA) library.ﬂ INA is built to serve as a scien-
tific investigation tool, adapted to the needs of scientists and con-
trolled by a graphical user interface. INA includes several nonlin-
ear data analysis tools and algorithms from lower to higher order
methods.

Let us consider a generic time series x(t). To address its fluc-
tuating characteristics, we may form the scale-dependent difference
measure as the time series,

Ox =x(t+71) - x(2). (3)

We therefore consider the normalized histograms of differ-
ences Ox at scale 7 to be an estimation of the probability distribution
functions (PDFs), P(x, 7), for a range of temporal scales 7 (see
technical details on the histogram methods in our previous paper’).
The FPGA-based implementation of the histogram algorithm for
computing multiscale PDFs follows closely the approach adopted in
INA.

C. Previous FPGA-based PSD implementations

In Ref. 22, the authors presented a fixed point implementation
for a PSD estimation system based on B-spline windows. The system
processes frames of only 1024 input samples represented using two’s
complement fractional numbering system (which is a fixed-point
format), where both the input samples and the generated results
have a 24-bit precision. The authors do not present the way they
implemented the FFT block, and the implementation was done on a
Virtex5 FPGA.

In Ref. 23, the authors presented a model-based design
approach and implementation for the calculation of the PSD of the
received signal inside the spectrum scanner of a cognitive radio sys-
tem. The signal processing comprises the implementation of a con-
trol unit, selectable window functions, the FFT, the calculation of the
magnitude, the selectable number of averages for the calculation of
peak and mean power values, as well as the logarithmic representa-
tion of the spectrum. The PSD calculation has been realized with a
system generator, which is a model-based design approach from Xil-
inx using MATLAB/Simulink as a development environment, and it
has been carried out to operate on the targeted FPGA within the
MicroBlaze processor system. The Xilinx IP core is used for FFT cal-
culation over 512 samples with no dedicated windowed step before,
while for magnitude computation, the CORDIC algorithm was used.

In Ref. 24, the authors presented an FPGA based design for
power spectrum analysis. Their platform allows for the real-time
data acquisition and processing of samples of the incoming signal
in a small time frame and sustains simultaneous data streams on
each of the four input channels. The processing consists of compu-
tation of power and its average and peak, over a set of input values.
Using reverse engineering techniques, they rely on the power spec-
trum analysis in order to reveal information such as frequency and
source about any interference, which impacts and changes the char-
acteristics of a signal. FFT computation is done over 256 fixed point
input values using the FFT CoreGen component from Xilinx, which
was considered convenient for multichannel processing.
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In Ref. 25, the authors proposed an implementation of a dig-
ital phosphor trigger. Their system transforms input time-domain
signals into frequency domain, by means of high-speed FFT, and
then plots the signals’ spectrum into a bitmap, which can be used
by the system, based on classification techniques to trigger different
judgments. LogiCORE IP Fast Fourier Transform v7.1 was used for
FFT calculation over 1024 points, and the square and logarithmic
operations in the actual power calculation are based on the CORDIC
IP core.

Although the FPGA designs are increasingly used in space
applications, it seems that none of the above-mentioned FPGA solu-
tions is appropriate for the specific context of our targeted applica-
tions, which is characterized by a significant complexity and the need
of the design to be stand-alone.

The most important difficulty of such designs that target an
FPGA implementation is to collect/store a sufficient number of sam-
ples on the chip for relevant analysis, until it becomes possible to run
the algorithms. Thus, the area occupation becomes the most impor-
tant critical factor, since the data sampling rate is much lower than
the operational frequency of the FPGA chip.

D. Previous FPGA-based PDF implementations

The idea of implementing PDF estimators in FPGA chips is
not new, as the PDF is a widely used tool in many types of appli-
cations and data analyses, one of the most important being particle
physics.”

A step-by-step PDF estimator, whose results are available in
real time, is presented in Ref. 27. The author discussed the design
optimization criteria and concluded, like we do in this paper, that
the area is the most important one. In the design presented in Ref.
27, in order to save the logic resources of the FPGA chip, the his-
togram is stored in dual-ported Block Random Accessed Memories
(BRAMs).

The authors of Ref. 28 also use multiple dual-port BRAMs to
store histograms. The goal is to perform parallel histogram equal-
ization for images. Each image pixel is evaluated in a single clock
cycle: the histogram bin is read, incremented, and written back
into the BRAM block. Since dual-port BRAM blocks are used, read
and write operations can be done in parallel, thus increasing the
speed.

In Ref. 29, the authors proposed an FPGA-based solution for
computing the Gaussian copula PDF. The authors considered speed
to be the main performance criterion, and the proposed design
aims at optimizing it. The proposed architecture is not stand-alone:
it is designed as a hardware accelerator inside a general-purpose
computing system and it is pipelined.

The idea from Ref. 28 is also discussed in Refs. 30 and 31. It
presents the same approach of updating a value, i.e., performing a
read-modify-write operation in one clock cycle (port A of the BRAM
is used as a read port, while port B is used as a write port), and uses
a common clock signal.

The stand-alone system presented in Ref. 1 proposes a few
FPGA-based solutions for computing multiscale PDFs, the main
optimization goal being the minimal amount of logic resources. It
also demonstrates the reduction of the power consumption by two
orders of magnitude compared to classical on-board data analysis
solutions.
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I1l. PROPOSED FPGA-BASED PDF AND PSD
IMPLEMENTATIONS

The solutions we propose in this paper for PSD and PDF
calculation are fully stand-alone and optimized for the logic area, as
they must both fit in the same FPGA chip. The entire hardware sys-
tem can be integrated into the central processor unit of the spacecraft
and able to analyze data in real-time. It can be seen as the base for
a bigger system which eventually can compress and extract a series
of key-parameters qualified to describe the variability of physical
quantities measured in situ by scientific instruments.

The hardware support for the implementations presented here
is a Xilinx FPGA chip, which usually contains four major types
of hardware resources: logic slices—used for implementing Boolean
functions, memory blocks (called “distributed memory”), or small
FIFOs/shift registers; slice Flip-Flops—containing up to 8 Flip-Flops;
BRAM;s—18/36 kbit memory blocks with dual port capabilities; DSP
blocks—which can implement basic multiply and accumulate oper-
ations, and can be clocked at twice the frequency of the rest of the
logic resources.

A. PSD implementation

Power spectrum analysis based on FFT implementations
became classic in the last few decades. Given the targeted environ-
ment of our application and space, where tremendous amount of
limitations are imposed, most of the optimization effort is oriented
toward minimizing the area occupied on the FPGA chip.

We work with the scenario that the data to be analyzed on-
board is vectorial (e.g., provided by a three-axis magnetometer). In
comparison with other implementations where in general only a
limited number of input samples are processed in a data frame, we
consider that a minimum number of N = 8192 sample points are
necessary to compute the PSD for each magnetic field component;
these data need to be stored on the FPGA chip.

The algorithm to be implemented is described below
(Algorithm 1). The block diagram of the whole system is shown in
Fig. 1.

1. FFT computation

In the context of space applications, it is essential to have
the best possible computational precision, while minimizing the
space occupied in the chip. Below, we present the main tools
available to perform the PSD calculation, their advantages, and
disadvantages.

ALGORITHM 1. PSD computation of data variance.

1 For each t; with i from 0 to N

2 Read measured data sample A(t;)

3 Save it in the corresponding resource

5 Compute B = FFT(A)

6. Store B in the corresponding resource
7

8

9

Compute C = PSD(B)
Store C in the corresponding resource

End for
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FIG. 1. The block diagram of the system where module A is in charge with PSD computation and module B computes the histograms and PDFs.

The problem of implementing FFTs in FPGAs is solved in
various contexts, and many IP cores are available for the devel-
opment of both scientific and industrial applications. A few IP
cores were developed for floating-point operators needed for our
application.

The objective is to perform FFT calculation for N spectral com-
ponents represented in single-precision floating-point—see Egs. (1)
and (2). Below, we provide a comparative analysis of the IP cores
discussed in the literature for PSD/FFT computation.

2. Xilinx DFT (discrete Fourier transform) LOGICORE
PG106

Xilinx provides several IP cores for their FPGA families. This
IP core’ implements forward and inverse DFTs for a wide range
of user-selectable point sizes. The bit-width of the input data sam-
ples may vary from 8 to 18, and the numbers are expressed in two’s
complement numbering system. Xilinx also delivers a bit-accurate C
model to support software simulation.

This IP core is easy to use, does not require a huge amount
of resources, but the data array size is not a power of two, which
requires additional logic on the chip. This IP core does not sup-
port FFT computation over more than 1536 data samples, which was
insufficient in our context.

The input is represented as a complex two’s complement fixed-
point value, while the output is a complex block floating-point value,
as defined for the forward transform.

3. VIVADO IP CORE PG 109

This TP core’ implements the DFT based on the classical
Cooley-Tukey FFT algorithm.” The number of input data samples
must be a power of two (but less than 65 537). It is capable of generat-
ing the FFT for both fixed point and single-precision floating-point
inputs and can be configured to process FFT on up to 12 different
channels.

This IP core is based on the AXI Interface. The IP core configu-
ration menu available in VIVADO gives the developer the possibility
to choose the parameters for the IP core.

This IP core provides run-time configurable transform length,
and thus the FFT size can be dynamically modified. However, the
streaming width cannot be configured, which means that the core
can only be fed with one complex point in a transaction, thus leading
to scalability limitations.

4. SPIRAL

The SPIRAL DFT/FFT IP generator’’ automatically generates
customized DFT modules in synthesizable Verilog. Like in most
IP core systems, there is a variety of parameters that are user cus-
tomizable, such as transform size, transform direction, data type,
architecture, radix, streaming width, data ordering, and BRAM
budget.

Two types of architectures need to be taken into considera-
tion when computing FFT: the fully streaming architecture, which
allows data to stream in and out of the system continuously, and the
iterative architecture, which consists of a single stage.”

In order to be able to integrate the Verilog modules gener-
ated by SPIRAL in our project, only a few minor modifications were
needed. Along with the BRAM budget (option that allows the user
to specify the maximum number of BRAMs to use when target-
ing a Xilinx FPGA), SPIRAL gives the user the opportunity to set
the streaming width and radix in order to tailor the IP core to the
application’s needs.

We considered that the iterative architecture is the best candi-
date to be used for this spectral analysis.

In conclusion, we considered that SPIRAL is the most appropri-
ate tool for developing our application, since it is the most flexible,
easy to use, provides accurate results, and allows the minimization
of the on-chip area.

Table I summarizes the main characteristics of these IP cores
for FFT computation.
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TABLE I. Comparison between IP cores for FFT computation.

Bit-accurate C model Maximum
IP cores for FFT Bitwidth of the Inputs: Fixed-point/ to support software number of data No. of
computation input data floating-point simulation samples channels Flexibility
Xilinx DFT . .
LOGICORE PG106 8-18 Fixed-point only YES 1536 1 Low
VIVADO IP CORE Both (fixed-point .
PG 109 8-34 OR floating-point) YES 65536 12 Medium
SPIRAL 4-32 Both (fixed-point NO 32768 1 High

OR floating-point)

5. PSD estimate (periodogram) computation

The periodogram [Egs. (1) and (2)] is computed over N/2
complex points [Fourier coefficients obtained above with Egs. (1)
and (2)].

6. VIVADO IP CORES Floating-Point Operator v7.1
(LogiCORE IP PG060)

The Xilinx Floating-Point Operator’® core integrated into
VIVADO allows a range of floating-point arithmetic operations
to be performed on FPGA. The operation is specified at the
core generation time, and each operation variant has a common
interface.

As stated in Ref. 7, this IP core “complies with much of the
IEEE-754 standard. The deviations generally provide a better trade-
off of resources against functionality.” However, the PSD estimates
computed using these cores were sometimes different from the ones
generated using the scientific software INA.

7. FLOPOCO

FloPoCo (an acronym for “Floating-Point Cores”) is an open-
source framework for the generation of arithmetic datapaths devel-
oped in C++ by de Dinechin et al.”’

FloPoCo operators are designed in the idea of “computing just
right:” no bit is computed if it is not useful, which means that the
user can choose various parameters in order to generate only the
necessary amount of logic resources in the FPGA chip for imple-
menting the target application. This framework makes the assump-
tion that by designing operators that are fully parameterized in pre-
cision, one may obtain more accurate results with less hardware and
in less time than the arithmetic units of general purpose computer
systems.

In order to use the generated operators the user has to adjust the
input and output format. More precisely, the user has to transform
floating point inputs into the format required by FloPoCo and the
results back again in IEEE 754 single-precision binary floating-point
format (or other format used).

The user can select a target FPGA chip, but the latest Xilinx
families are not supported yet (the last family available was Virtex5).
However, FloPoCo is in a continuous development, and updates are
expected to appear for all the operators.

In terms of used resources, the differences between the two
IP cores are not significant, but FloPoCo infers more DSP48El

blocks. However, the biggest problem is the inaccuracy of the results
obtained with the VIVADO IP core when compared to INA results,
which led us to choosing FloPoCo for the implementation of this
block of our architecture.

8. Implementation of the global PSD block

The goal was to implement the PSD estimator for as many sam-
ples as possible with maximal precision and minimizing the area
(amount of occupied resources) in the FPGA chip. The architecture
was tailored to process 8192 samples, but in order to compare with
previously reported implementations, we also present the results for
1024 samples.

As mentioned before, after performing tests with all the IP
cores, alone and in all the possible combinations, we decided that the
best combination for our application is composed of SPIRAL (for the
FFT computation) and FloPoCo (for the floating-point operations).

The block diagram of this architecture is shown in Fig. 2. X isa
parameter that depends on the problem’s size, X = log>(N) — 1.

The control unit is a Finite State Machine (FSM) that controls
the entire system. Data samples are first received byte by byte and
stored iteratively in the BRAMs until the entire data frame is formed.

Once that the complex values are received, the FFT block is
notified using the “data_to_process_ready_fft” signal (Fig. 2) which
will trigger the FFT computation. The FFT block is actually a wrap-
per over the SPIRAL core, which is fed with complex values read
from BRAMs. This block collects and stores Fourier coefficients back
in BRAMs, thus iteratively replacing data samples that were used for
the linear transform. Once the FFT computation is done, the control
unit is notified, which at its turn starts the PSD computation through
the “data_to_process_ready_ps” signal (Fig. 2).

The PSD block was generated with FloPoCo. In the PSD block,
the FFT coefficients are read from BRAMs and PSD coefficients are
written in the same BRAMs, thus replacing the previously obtained
FFT coefficients. After the PSD estimate computation is done, the
control unit reads PSD data from memory and sends them to the
PC.

We have used 4 independent BRAM:s instead of a single one
to store data samples, FFT coefficients, and PSD coefficients for the
following reasons. Our power spectral density tool is a generic archi-
tecture developed in such a way that it can be used for a concrete
implementation by using any of the IP cores available for the FFT
and PSD computation. We had to divide the needed memory in four
BRAM blocks because of the module generated by SPIRAL, which,
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FIG. 2. Block diagram of the PSD computation module.

configured with a streaming width of two, expects as inputs two real
and two imaginary values on each clock. It also yields as outputs two
FFT coefficients on each clock cycle, until the transform is done.
Reading from BRAMs into an auxiliary array in order to feed
the FFT block with 4 values in a clock cycle and to collect results into
an array was not a feasible idea because when N is big, the synthesis
tool will try to infer BRAMs. Accessing more than 2 elements in the
same array on the same clock cycle will either cause the synthesis
tool to replicate the BRAM, so more read ports would be necessary,

or if the synthesis tool cannot figure that out, it will instead build
the array from loose slice Flip-Flops. If the array is large like in our
case, this would indeed cause long synthesis time and moreover the
number of control sets needed might exceed device capacity.

The main aspect is the fact that this architecture based on four
BRAMs is able to fetch in one clock cycle both operators needed
to feed the PSD computation module. This is possible because
the read/write operations are implemented by means of two sepa-
rate BRAMs. The final results of the PSD computation module are
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ALGORITHM 2. PDF computation. Basically, we divided the memory in four BRAMs, each one of
them storing N/4 data samples to make sure that the 4 values needed
1. For each t; with i from 0 to N in every clock cycle are available in parallel. Thus, it became possi-
2. Read measured data sample A(t;) ble to both feed the FFT block and store its results directly from and
3. Save it in the corresponding resource into all the BRAMs in parallel by using a Multiplexer which allows
4. For each 7 writing different values, both sequentially and in parallel, in each
5. Compute A(t;) — A(ti — 1) BRAM.
6. Increment the corresponding bin B. PDF implementation
7. End for
8. End for The architectural solution for implementing PDF computation
is based on a simple algorithm (Algorithm 2), which consists of two
main parts: data acquisition and histogram computation, as shown
in Fig. 1.
residing in only one BRAM. An architecture based on a single Since the input data sample is common to the PSD and PDF
BRAM would have a more complex, which would have had con- modules, it uses the values already saved in the BRAMs instead of
sumed more valuable logic resources that can be used for imple- replicating the input data on the FPGA by storing them somewhere
menting other algorithms on the same FPGA chip. on the chip.
ok —_:[>_<
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FIG. 3. Block diagram of the BRAM-based architectural solution for histogram computation in the PDF module.
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FIG. 4. Histogram computation block for one 7.

1. Data acquisition block

Here, we only need the data samples at 7 (the temporal scale)
distance from the currently gathered data sample (see Sec. II B);
thus, it is enough to be able to access them only at the correspond-
ing indices. When a new data sample is read at a specific clock rate
(CLK4), K other data samples need to be read from the memory,
until the arrival of the next data sample to compute the A; = A(t)
— A(t — 7) differences for each 7 in parallel (lines 4-7 from Algo-
rithm 2) and update the corresponding bin for each histogram. After
the new data sample is written to the BRAM block at the correspond-
ing address, the values from 7 distance must be read sequentially
from the BRAM (K previously stored data samples). All these oper-
ations must be performed until the next data acquisition cycle is
finished. That is why it is necessary to ensure a clock signal that must
be at least K times faster than the data acquisition clock. We denote
this signal by CLK3. Each time a data sample is read, the difference
(4) is computed and the result is stored in a separate register (one
for each 7). Before a new sample arrives, each data sample located
at the specific distance from the new data sample is subtracted from
the latter, the result being available in a separate register.

ARTICLE scitation.orgljournal/rsi

To compute the indices of the data samples that must be read,
a shift register is used, as shown in Fig. 3 and discussed in Ref. 1. At
the arrival of a new sample, a “1” is written to the end of the shift reg-
ister, and it is propagated through the shift register at the CLK3 rate.
Thus, in each “small” cycle of CLKp, we get a binary number that
represents a power of which is subtracted from the current memory
address given by the counter.

The biggest advantage of this design is the small amount of
resources used, especially memory (this represents only 1/K of the
solution where each data BRAM would have been duplicated K
times to obtain full parallelism); and since it uses the BRAMs from
the PSD implementation module, the full circuit requires half of the
memory resources for storing the input data, compared to duplicat-
ing them and saving them in a separate BRAM specifically for the
PDF circuit.

2. Histogram computation block

This design must compute K = 14 different histograms in paral-
lel, i.e., the histogram of the results from x1-xo, x2—x0, X4—Xo, Xg—Xo,
..., x8192-%0. The width of each histogram bin is user customizable,
but the design is much simpler if this number is a power of 2. Since
the input data samples are 16-bit numbers, the differences will have
the same bit-width. If we choose to have, for instance, 128 = 2’
bins for each input data sample, the 7 most significant bits of the
result have to be pruned out, which will constitute the index of the
corresponding bin.

The histogram is composed by the resulting collection of K
bins, where each bin contains the number of deltas (differences) in
a given interval. The best way to store these numbers is in BRAMs
(the same solution was adopted in Refs. 1, 27, 28, and 38). Each time
a new A is computed, its corresponding bin is incremented using a
scheme like the one presented in Fig. 4.

The PDF algorithm implies computing a different histogram
for each 7, so the schematic from Fig. 4 is replicated K times. Each
histogram bin has a maximal capacity of 256 x 16 = 4096 bits because
we can have at most 256 bins. Since the capacity of a Xilinx BRAM is

DATA_VALID D
l > D P > D Q! Register
Register l r Register > >
»—D >—>
L_D
EN
WE Register
RS 1 B R —p
S > D1 DO1 FIG. 5. Block diagram of the solution featuring a sequential
o — read-modify-write operation.
2 w1 BRAM
| »—D Q
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36 kbits, the histogram bin will surely fit in one BRAM, which gives
a total of K BRAMs needed in this design.

Incrementing a value from a memory location comprises three
elementary steps: first, the value needs to be read out, then incre-
mented, and then written back into the memory (this is a read-
modify-write memory operation). All these operations should the-
oretically be performed in one clock cycle. However, since these
operations deal with the same memory location, each operation
of reading and writing from and to the BRAM requires at least
one clock cycle—so, in order to handle this problem, it is manda-
tory to design an additional schematic, like the one presented in
Fig. 5.

With every new data sample that is gathered, the corresponding
bin needs to be updated in one clock cycle. Since this requires mul-
tiple operations, a solution is to use pipelining with a faster clock
CLKc¢, whose frequency must be at least 4 times greater than the
data acquisition clock frequency, CLK 4 (this is similar to the usage
of CLK3p, as explained in Sec. III B 1), because it needs four clock
cycles to correctly update the histogram.

In the first two cycles of the faster clock, CLKc, the value of
the histogram bin counter is read from the memory and saved to
a register. Then, the value is incremented and written into another
register. Finally, the incremented value is written back to the BRAM,
while the enable signal is also propagated to this stage of the pipeline,
so it will also serve as Write Enable (WE). In addition, the address
of the histogram bin is saved in a register, to be available when the
incremented value is written back. Each time a new set of data is
available from the data acquisition block, a DATA_VALID enable
signal becomes “1” for one CLK ¢ cycle. This protocol is presented as
a waveform diagram in Fig. 6.

Since each difference delta (A) becomes available in a CLKp
cycle (Sec. III B 1), which is K times faster than CLK,, it is
convenient if CLKc has the same frequency as CLKjp, so the
update of the K histograms can begin right after each difference is
obtained.

This solution differs from the one presented in Ref. | for both
the data acquisition block and the histogram computation block.
In Ref. 1, the input data were stored in one large shift register,
using only LUTs, with accesses to the data at various indices in
order to compute the K different histograms. The reason for choos-
ing a different solution was to save the BRAMs for PSD processing
algorithms and to make sure that in each clock cycle, when a new
data sample arrives, the K other data samples needed for the A differ-
ences are directly accessible. This increases the maximal operational

frequency of the design. On the other hand, the data samples are the
same as for the PSD computation, so there is no need to store them
separately, thus saving a great amount of resources per global. How-
ever, in order to access the K other data samples, a faster clock is
used, which limits the operational frequency.

Overall, the histogram computation method from this paper
may achieve a slightly lower operational frequency compared to
the one in Ref. 1, but it uses fewer resources, especially Slice
LUTs.

IV. EXPERIMENTAL TESTS AND RESULTS

A serial protocol was developed to establish a communication
between the FPGA chip and a PC. The benefit of this approach is
that the testing data are sent from the PC to the FPGA chip at the
transfer rate of 9600 bps, which is quite close to the rate at which
data samples are gathered by a magnetometer sensor (~100 Hz).
This connection is used to simulate data gathering from an external
sensor. After the input data are ingested, they are processed by the
two on-chip algorithms described above. To verify the correctness
of the on-chip processing, the PSD and the normalized PDF results
are compared with the ones obtained with the scientific software
INA.”'

The designs were also tested using a real magnetometer, Hon-
eywell HMC5883L,” which was connected directly to the FPGA
chip. The sensor was on a Digilent CMPS, a 3-axes digital compass,
and it uses the I*C protocol to communicate. This device is designed
for simple compassing and magnetometry applications. Its maximal
field resolution is of 2 mG in +8 G fields, obtaining a 1°-2° degrees
compass accuracy. It has low energy consumption. Its digital inter-
face and 160 Hz maximum output rate are appropriate for testing
our designs in this context.

A. Connecting with the PC

A Finite State Machine (FSM) was designed to establish the
communication between the FPGA chip and the PC and/or the mag-
netometer through the serial port. Hence, the design needed to be
extended with an additional UART interpreter component and mul-
tiple clock dividers. In case data samples are gathered directly by
the magnetometer, the FSM only reads data samples from it and the
results are sent to the PC for visualization; in case data samples are
read from a file from the PC (simulated data), the communication
with the PC will be bidirectional.
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At the end of the computation process, the FSM reads the results and shows all this information on graphs.

from the memory and sends them back to the PC through the serial This system is able to process real data samples gathered
channel. Figure 7 shows the state diagram of this FSM. from measurements made in space, but in order to confirm the
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FIG. 8. Power spectrum estimates for a synthetic signal of 8192 data points (a superposition of two sine waves with frequencies of 50 and 80 Hz): (a) graphic generated
using INA and (b) graphic generated using the on-chip results.
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Data Slice LUT's Slice registers BRAM tiles DSPs
samples (N) (used/total) (used/total) (used/total) (used/total)
1024 5055/63 400 (7.97%)  6402/126 800 (5.05%)  12/135(8.89%)  10/240 (4.17%)
2048 5047/63 400 (7.96%) 6446/126 800 (5.09%) 40/135 (17.78%)  10/240 (4.17%)
4096 5055/63 400 (7.97%)  6490/126 800 (5.12%)  68/135 (35.56%)  10/240 (4.17%)
8192 5039/63 400 (7.95%)  6535/126 800 (5.15%)  96/135 (71.11%)  10/240 (4.17%)

TABLE Ill. Power consumption—estimated for the final PSD architecture with 1024,
2048, 4096, and 8192 data samples, respectively.

No. of input Total on-chip FFT computation  PSD estimate
data samples  power (W) (W) computation(W)
1024 0.292 0.151 0.038

2048 0.388 0.243 0.039

4096 0.484 0.335 0.040

8192 0.581 0.429 0.041

accuracy, we used custom synthetic signals created using the INA
library developed within the FP7 project STORM.”' To validate this
project even more, we also used a magnetometer as the data source.

B. On-chip results

1. PSD implementation results

The experiments were made on a 7 series Xilinx FPGA, Artix-7
XC7A100T.

Figure 8 presents a comparison between spectral analysis
provided by INA software’’ and our FPGA solution, for 8192
data points. The input signal was a superposition of two sinus

functions with frequencies: 50 and 80 Hz, respectively. The results
show good accuracy confirming that the FPGA solution performs
well and provides a good estimation of the PSD of the test signal.

One can see from Table II that depending on the number of
data samples considered for the analysis only the BRAM amount
increases proportionally with N. The other columns in Table IT show
that the other aspects do not suffer from any modifications. In addi-
tion, the processing time required for a data frame is directly propor-
tional to N, the total number of samples. As stated before, the archi-
tecture can process both real and complex values, which basically
doubled the amount of memory needed for storage. In the event of
the implementation of this solution in space applications, by simple
modifications of a few indexes, the space required by the architecture
can be considerably reduced by preparing it for real signal process-
ing only. In addition, since the results from Table II are for only one
axis of the magnetometer, these values must be multiplied by 3 in the
case of a full implementation.

As a conclusion, we can state that the main objective of
our design, data compression, is indeed accomplished. This FPGA
architecture achieves a 50% data compression rate for real signals,
whereas in the case of complex signals, the compression increases to
75%. These solutions may therefore increase the scientific output of
space exploration missions.

TABLE IV. Resource utilization report for the PDF computation module.

Data Slice LUTs Slice registers BRAM tiles DSPs
samples (N) (used/total) (used/total) (used/total) (used/total)
1024 1016/63400 (1.6%)  691/126 800 (0.54%) 5/135 (3.7%) 0/240 (0%)
2048 1102/63400 (1.74%)  745/126 800 (0.59%)  5.5/135 (4.07%)  0/240 (0%)
4096 1144/63 400 (1.8%)  821/126 800 (0.65%) 6/135 (4.44%) 0/240 (0%)
8192 1218/63 400 (1.92%) 886/126 800 (0.7%) 6.5/135 (4.81%) 0/240 (0%)
TABLE V. Resource utilization of the full design, containing both PSD and PDF.

Data Slice LUT's Slice registers BRAM tiles DSPs
samples (N) (used/total) (used/total) (used/total) (used/total)
1024 6267/63400 (9.88%) 7198/126 800 (5.68%) 17/135 (12.59%) 10/240 (4.17%)
2048 6329/63400 (9.98%) 7309/126 800 (5.76%) 45.5/135(33.33%) 10/240 (4.17%)
4096 6392/63 400 (10.08%) 7420/126 800 (5.85%) 74/135 (54.81%) 10/240 (4.17%)
8192 6455/63 400 (10.18%) 7531/126 800 (5.94%) 102.5/135(75.93%) 10/240 (4.17%)
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FIG. 9. The normalized PDF histogram for 8192 data points: (a) results of the FPGA implementation and (b) results of the software implementation.

Another important aspect to be considered when designing 2. PDF implementation results
solutions for the space field is power consumption. Table III shows

the power consumption of the FPGA device, as estimated by Xilinx Table IV shows the resource utilization by the PDF computa-
software support tools. Because only a low frequency clock signal is tion module for different input set sizes. These values include mostly
necessary, it will lead to a small power consumption (at least two the histogram computation part, and the data storage part, without
orders of magnitude less) in comparison with a software (PC or the BRAMs since these blocks are shared with the PSD computation
microcontroller-based) implementation. module.
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Table IV also shows that increasing the input data sample size
(and, implicitly, the value of K) leads to a higher amount of resources
used. This is reflected especially in BRAM tiles, since one 7 requires
one additional histogram, which is contained within a half BRAM
block.

Table V presents the resource utilization of the full design for
the FPGA, including both the PSD and PDF implementations, for
different sizes of the input data. There is a tiny change in the amount
of logic resources, no change at all for DSPs; however, the BRAM
blocks are used intensively. Therefore, it is important to reduce the
amount of memory resources, by sharing the BRAMs between PSD
and PDF.

Figure 9 shows a normalized PDF histogram for 8192 data
points, for a random walk signal: (a) in the case of the FPGA imple-
mentation (the normalization was done on the PC, after the his-
togram was read back from the FPGA) and (b) in the case of the
software implementation using INA.

3. Latency and throughput

For the FFT computation, the latency is 57 279 clock cycles; as
for the throughput, a new transform is done every 57 279 cycles. As
for the PSD estimation, the latency is 114 688 clock cycles; as for the
throughput, a new transform is done every 53 275 cycles (585 data
samples are computed/s).

Since the PDF computation module uses three clocks with dif-
ferent frequencies, computing the latency is more complicated. The
data is sampled at the frequency of CLK_A; CLK_B is used for com-
puting each A_7 from the sequence, so the frequency of CLK_B is
K times faster than the frequency of CLK_A. Finally, the histogram
is updated using CLK_C, whose frequency is at least 4 times faster
than the frequency of CLK_A, but for convenience, it has the same
frequency as CLK_B. Hence, the latency of the PDF computation
block is K + 4 using CLK_B because after the last A_7 is computed,
the histogram is updated in 4 additional clock cycles.

The throughput of the PDF computation module is equal to the
data sampling, which is 9600 bps, i.e., 300 data samples/s.

These values exclude the data acquisition/transmission time.

4. Power consumption

Table VI presents the power consumption of the full design,
estimated by Xilinx tools. The PSD computation module is largely
dominant, because of the intensive computations that occur in the
PSD circuit. The BRAM blocks that store the input data samples
are also considered as part of the PSD circuit, while for the PDF,
simple arithmetic operations (addition and subtraction) and a few
memory read-write operations are performed. Still, the total power

TABLE VI. Power consumption—estimated for the final design, including both PSD
and PDF circuits.

Data Total on-chip PSD PDF Histogram
samples power (W) (W) (W) W)
1024 0.306 0.189 0.013 0.007
2048 0.404 0.282 0.013 0.006
4096 0.502 0.376 0.013 0.004
8192 0.600 0.470 0.013 0.003

ARTICLE scitation.orgljournal/rsi

consumption is two orders of magnitude lower than on PCs or
microprocessors.

V. CONCLUSIONS

In this paper, we propose a single chip, FPGA-based archi-
tecture for efficient on-board analysis of space data using DSP
algorithms as PSD and PDF.

Two important aspects were addressed: area and accuracy. Both
algorithms are synthesized on a single FPGA and process in real-
time up to 8192 data samples on an Artix7 technology. The compu-
tations’ accuracy was confirmed by comparing the results with the
ones produced by a certificated scientific library adapted specifically
for space data analysis.

One of the biggest advantages of the proposed architecture is
that it can be very easily scaled depending on the targeted device.
In addition, the power consumption of this design is up to two
orders of magnitude less than a processor-based implementation, an
aspect that is facilitated by the relatively low rate at which the data
acquisition process is done in a spatial context.

Given the space application context, the effective weight of the
whole system is also crucial, and from this point of view, a single-
chip FPGA-based implementation like the one proposed in this
paper is an almost ideal solution.

All the important aspects of such a design in the spatial context
were presented together with simulation results, which demonstrate
the potential of this solution to be integrated in the space tech-
nologies on-board modern scientific spacecraft. This paper shows
how logic resources can be effectively shared in the FPGA chip to
obtain two hardware implementations of some fundamental DSP
algorithms for space applications, with all the benefits brought by
a hardware implementation, in terms of power consumption, area,
weight, and speed.
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