
CHAPTER 2

Historical Background of Big Data in
Astro and Geo Context
CHRISTIAN MULLER, DR

2.1 HISTORY OF BIG DATA AND
ASTRONOMY

2.1.1 Big Data Before Printing and the
Computer Age

Astronomy began in prehistoric times by the observa-
tion of the apparent motions of the sun, moon, stars,
and planets in the Earth’s sky. Big Data was not easy to
define before the computer age. According to Zhang and
Zhao (2015), Big Data is defined by ten characteristics,
each beginning with a V: volume, variety, velocity, ve-
racity, validity, value, variability, venue, vocabulary, and
vagueness. This list comes from previous studies of Big
Data in other domains, such as marketing and quality
control. They consider that the four terms volume, vari-
ety, velocity, and value apply to astronomy.

Velocity did not exist before the computer age, as
the acquisition of observations and their recording and
publishing were entirely manual until the printing and
the electric telegraph.

However, volume was already present in the early de-
scriptions of the night sky: “as the stars of heaven” is a
biblical equivalent of infinite, meaning “which cannot
be counted.”

Variety corresponds to the different observed ob-
jects; the ancients had only optical observations, but
the conditions of these observations differed between
observer sites. Their eye sight was also probably better
trained. An ethnological study (Griaule and Dieterlen,
1950) revealed that the cosmogony of the Dogon peo-
ple in present-day Mali indicated two companions of
Sirius, four satellites of Jupiter, a ring around Jupiter,
and knowledge of Venus phases. This kind of oral tradi-
tion will probably be difficult to verify in other ethnic
groups, as more and more literacy is spreading over
the entire world and oral transmission is disappear-
ing.

Value corresponds to the progress in general knowl-
edge associated with the observations and to their prac-
tical application in navigation or the calendar. For ex-
ample, the heliacal rise of Sirius had an extreme impor-
tance for the Egyptian calendar related to its coincidence

with the flooding of the Nile (Nickiforov and Petrova,
2012). In this respect, the corpus of Egyptian observa-
tions led to the Egyptian calendar, which was adopted
by Julius Caesar when he became the ruler of Egypt and
which, with a minor revision in the late 16th century,
became our current calendar.

Big Data cannot exist without data preservation.
The first steps were the compilation of star catalogues,
which began in Hellenistic times when the infrastruc-
ture of the Alexandria museum and library were avail-
able (Thurmond, 2003). Star catalogues not only give
the name of stars but also their position. Hipparcos
combined previous Babylonian observations, Greek
geometrical knowledge, and his own observations in
Rhodes, and he was the first to correct his data for pre-
cession, but as his manuscripts are lost, he is essentially
known by his distant successor, Claudius Ptolemy from
Alexandria, whose catalogue, the Almagest, has been
preserved (Grasshoff, 1990). The number of stars of the
original manuscript is not absolutely clear; Thurmond
indicates a number of 1028. See Fig. 2.1.

The precision of the observations was sometime un-
equal as different observation sites had been used and
refraction was not corrected for. The Almagest became
the main reference until the end of the Middle Ages,
when several versions made their way to the Arab world
and Arab astronomers both added new observations
and adapted the book to their own epochs. Finally, the
Almagest came back to the Western world by the Latin
translation from an Arabic version of Gerard of Cre-
mona in 1175. None of the Arabic versions increased
the number of stars; some, due to the observation lat-
itude, even mention less stars than Ptolemy. The first
new catalogue to appear was endeavored by Ulugh Beg
in Samarkand in the 15th century using only original
observations from an especially designed large obser-
vatory, correcting the errors made by Ptolemy in con-
verting the Hipparcos observations. This time, only 996
stars were observed. This catalogue was fully translated
in Europe only in 1665, but it was known in the Arab,
Persian, and Ottoman worlds.
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FIG. 2.1 Almagest zodiac in the first complete printing by Petri Liechtenstein (1515), United States Library
of Congress. Printing had two advantages: the multiplication of copies and thus a better dissemination, and
protection against copyist’s errors or “improvements.”

2.1.2 The Printing and Technological
Renaissance Revolution

The 16th century was marked by three important evo-
lutions: the generalization of open sea navigation using
astronomical positioning techniques, the appearance of

accurate mechanical clocks, and the development of
astrology. All these necessitated better star catalogues
and planetary ephemerides. At the same time, the print-
ing technology allowed the diffusion of the astronom-
ical writings and was followed by a real explosion of
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the number of publications (Houzeau and Lancaster,
1887). Printing secured two important elements of Big
Data: preservation of controlled copies and availability
to a larger number of users.

Astronavigation was already used in the 15th century
by the Portuguese, Arab, and Chinese navigators, but
proved to be very risky during the first intercontinen-
tal explorations. It is in this context that the Ottoman
sultan Murad III ordered the construction of a large ob-
servatory in Constantinople superior to the Ulugh Beg
observatory and equipped with mechanical clocks. The
chief astronomer, Taqi ad-Din, wanted to correct the
previous catalogues and ephemerides to promote im-
provement in cartography (Ayduz, 2004). He improved
and designed new instruments much superior to pre-
vious versions. Unfortunately, the observatory was de-
stroyed in 1570 due to a religious decree condemning
astrology.

Almost simultaneously, Tycho Brahe equipped a
huge observatory in Denmark with instruments and not
only used up to 100 assistants, but also spent for 30
years about 1% of the total budget of Denmark (Couper
et al., 2007), Tycho Brahe was the first to take refrac-
tion into account and to analyze observational errors.
His huge accomplishments were transferred to Prague
where he became the astronomer of emperor Rodolph
II and was assisted by Johannes Kepler, who succeeded
him. Kepler demonstrated the existence of the helio-
centric system and determined the parameters of the
planetary elliptical orbits using Tycho’s data. The quan-
tity of data measured and reduced by Tycho Brahe and
their accuracy were an order of magnitude greater than
what existed before, representing maybe the first in-
stance of Big Data improving science.

Astrology was the main application of this scientific
project and the tables produced by Kepler. The Rudol-
phine Tables are still used by present-day astrologers,
who usually do not have the means to adapt the epoch.
Astrology at the time was the equivalent of present-
day business intelligence and was commonly used for
any kind of forecasts. Galileo taught medical students
the art of establishing the horoscopes of their patients.
Galileo was in this respect accused in a first inquisition
trial of fatalism, which is the catholic sin of believing
that the future can be certainly known to human in-
telligence (Westman, 2011). At the same time, Lloyd’s
of London were determining marine insurance fees by
the expected technique of inspecting the ships and crew
records, but the last judgment was left to astrologers
(Thomas, 2003). Astrology cannot be considered a pre-
cursor of Big Data and their role in business intelligence,
as large-scale statistical treatments of economic data

were first given by Adam Smith (1778) at the end of the
18th century. Astrologers would rely on a feeling based
on their knowledge which they could not quantify for
everything outside their analysis of the sky. Astrology
became suspected of being linked to superstition dur-
ing the English Reformation, but luckily, astronomy be-
came a respected science in Great Britain. For example,
the founder of the London stock exchange, Thomas Gre-
sham, established Gresham College in the late 16th cen-
tury for the education of the young bankers and traders
with the following professorships: astronomy, divinity,
geometry, law, music, physics, and rhetoric. “The astron-
omy reader is to read in his solemn lectures, first the
principles of the sphere, and the theory of the planets,
and the use of the astrolabe and the staff, and other
common instruments for the capacity of mariners.” This
program did not make any mention of astrology and its
use as a predictive tool in commodity trading.

Robert Hooke, who was professor at Gresham col-
lege, insisted on the use of telescopic observations in
order to increase the number of stars and their posi-
tional accuracy, but this important progress was only
initiated by John Flamsteed, the first Astronomer Royal
who exceeded the precision of Tycho Brahe’s observa-
tions and published a catalogue of 2866 stars in 1712
(Thurmond, 2003). At that time, a marine chronometer
accurate by one minute in six hours existed and an able
seaman was for the first time able to determine an ac-
curate position by using the sextant without any other
information. Better marine chronometers were progres-
sively developed (Landes, 1983), but due to their high
price, their generalization had to wait until the 19th cen-
tury. Flamsteed got a commission to build the Green-
wich observatory in close connection with the British
Admiralty; the accurate chronometers designed by John
Harrison for this observatory were essential to the ex-
ploration of the Southern hemisphere oceans by Cap-
tain Cook and his followers.

Later, in the 18th and 19th century saw the astro-
nomical observations being extended to the Southern
hemisphere. At the end of the 19th century, the pho-
tographic technique allowed to win again an order of
magnitude in the number of stars. At the beginning of
the 20th century, about 500,000 stars had been iden-
tified and several catalogues were under development.
The last catalogue before the space age was the Smithso-
nian Astrophysical Observatory catalogue in 1965, with
258,997 stars listed with 15 description elements for
each. The SAO catalogue used electronic data treatment
since the middle of the 1950s and is the first to fully
meet the definition of Big Data given in the first para-
graph.
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FIG. 2.2 Frontispiece of the Rudolphine Tables: Tabulae
Rudolphinae, quibus Astronomicae scientiae, temporum
longinquitate collapsae Restauratio continetur by Johannes
Kepler (1571–1630) (Jonas Saur, Ulm, 1627).

It is now succeeded by the new efforts based on space
age techniques and the massive use of large databases
which constitute the basis of the BigSkyEarth COST ac-
tion. See Fig. 2.2.

2.2 BIG DATA AND METEOROLOGY: A LONG
HISTORY

2.2.1 Early Meteorology
The study and comparison of large amounts of observa-
tions constituted the early base of meteorology. The rep-
etition of phenomena proved very early to be less regu-
lar than astronomical events, and even extreme events
were the unpredictable action of the gods. The Baby-
lonians and Egyptians compiled a lot of observations
without relating them. A big step forward was the clas-
sifications and typologies assembled by Aristotle and

the structuring of these early sources. Aristotle was also
the successor of the Greek natural philosophers who at-
tempted to relate the observations to their causes so that
they could explain them and even attempt forecasts.
Aristotle was the first to describe the hydrologic cycle.
His knowledge of prevailing winds as a function of sea-
son proved to be essential to the conquest of Greece by
the Macedonian army, the Greek islands being unable
to send troops to their allies in the continental cities in
time due to contrary winds. The meteorology of Aristo-
tle covered a wider context than now because it included
everything in the terrestrial sphere up to the orbit of the
moon and thus would have included geology and what
is now called space weather (Frisinger, 1972).

Unfortunately, Aristotle’s efforts were not continued
for long. His successor Theophrastus compiled signs
which in combination could lead to a weather forecast.
These progresses did not prevent most of the population
to attribute weather to divine intervention and when
Christianity and Islam took over, the pagan gods were
replaced by demons. No systematic records of weather
were kept, and present climate historians have to resort
to agricultural records or indications in chronicles. Dur-
ing the Renaissance, the revival of Hippocratic medicine
led physicians to consider the relation between the en-
vironment and health and record meteorological data
again; similarly the logbooks of the ships at sea be-
came more systematic, leading in the 18th century to
the first large set of meteorological data which began to
follow a standardization process, as exemplified by the
Societas Meteorologica Palatina (Meteorological Society
of Mannheim) (Kington, 1974) which started in 1780,
and established a network of 39 weather observation
stations; 14 in Germany, and the rest in other coun-
tries, including four in the United States, all equipped
with comparable and calibrated instruments: barome-
ters, thermometers, hygrometers, and some with a wind
vane. During the 19th century, more meteorological ob-
servatories were established in Europe, North America,
and in the British Empire. The progress of telegraphic
communications led to consider the establishment of a
synoptic database of identical meteorological parame-
ters measured at different observatories.

2.2.2 Birth of International Synoptic
Meteorology

The breakthrough occurred with Leverrier in 1854. Lev-
errier was a French astronomer who reached celebrity by
predicting the position of Neptune from perturbations
of the Uranus orbit. Gelle at the Berlin observatory was
then able to observe the planet at the predicted position.
Following a disastrous storm in the Black Sea during
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the Anglo-French siege of Sebastopol, the French gov-
ernment commissioned Leverrier to determine if with
an extensive network of stations, the storm could have
been predicted. After analysis, he determined that the
storm had originated in the Atlantic several days be-
fore the disaster and that a synoptic network would
have allowed to follow it and to make a raw forecast
of its arrival in the Black Sea (Lequeux, 2013). Unfortu-
nately, Leverrier could never assemble the legions of la-
borers necessary to study the long-term physical causes
of weather and climate. His efforts were however the
first steps to the creation of an international synoptic
network in parallel to the geomagnetic network already
developed by Gauss, Sabine, and Quetelet (Kamide and
Chian, 2007). The extension of the geophysical network
to meteorology was rapid due to the establishment of
meteorological services in most observatories and the
development of the electric telegraph. These founding
fathers made an unpreceded effort to internationalize
the effort, and most notably, the Dutch meteorologist
Buys-Ballot, founder of the Royal Dutch Meteorological
Institute, published the empirically discovered relation
between cyclones, anticyclones, and wind direction, in-
troducing fluid physics to meteorology and the basis of
future forecasting models (WMO, 1973).

These early networks hardly fit the definition of Big
Data: the telegraphic systems of the different coun-
tries were not standard, the archiving of the data was
not uniform, and a lot of parameters were station- or
operator-dependant. The exchange of processed data
as hourly averages was not evident. However, around
1865, the generalization of the Morse telegraphic pro-
tocols together with the application of the newly dis-
covered Maxwell equations improved the reliability of
the telegraph, and regular exchange of data between
stations became the norm. International meteorologi-
cal conferences regularly met, beginning in 1853 at the
initiative of the United States Naval Observatory, the
first one presided by the director of the Brussels Ob-
servatory, Adolphe Quetelet. Even though fewer than
15 countries were represented, no explicit resolutions
came from this first meeting because any recommen-
dation would have led to modifications of the practice
of the signatories; the wording was very general, e.g.,
“that some uniformity in the logs for recording ma-
rine meteorological observations is desirable.” Anyway,
a process was started, which led in 1873 to the foun-
dation of the International Meteorological Organiza-
tion at a Vienna international conference led by Buys-
Ballot (WMO, 1973). This new organization proved to
be strong enough to standardize practices in the entire
world. It established a permanent scientific committee

who began by adopting common definitions of the me-
teorological parameters. See Fig. 2.3.

2.2.3 Next Step: Extension of Data
Collection to the Entire Globe

The distribution of stations of this first network was
heavily biased to Western Europe and the Eastern
United States. It was clear at the beginning that a real
network should extend to the entire world, includ-
ing the Southern hemisphere. As a permanent exten-
sion was beyond the means of the early International
Meteorological Organization, periodic campaigns for
the study of polar regions were proposed by several
countries, combining exploration and maritime obser-
vations. The first one, in 1883, was concentrated on
the Arctic ocean and a few sub-Antarctic stations. The
observations took place between 1881 and 1884 and
demonstrated the feasibility of a network extension.

The success of the first campaign led to the second
International Polar Year in 1932–1933. This campaign
was initiated and led by the International Meteorolog-
ical Organization and extended to geomagnetism and
ionospheric studies; more countries participated, and
the program included simultaneous observations at low
latitudes. This campaign should have included a net-
work of Antarctic stations, but the financial crisis of
the time limited the funding means of the participat-
ing countries. The collection and use of Big Data was
already envisaged by the establishment of World Data
Centers centralizing data by themes.

The Second World War extended to the entire North-
ern hemisphere and parts of the Southern Pacific. Me-
teorological forecasts were essential, and the allies de-
cided on a very wide synoptic network. This effort was
led by the UK Met Office, which exfiltrated qualified me-
teorologists from Norway and several other occupied
European countries. The Germans took a more theo-
retical approach, demanding less stations. The Anglo-
American meteorological forecasts, with a better time
resolution, were essential in planning successful am-
phibious operations at the end of the war, as well as air
force support. After the war, the extension of this net-
work to the Southern hemisphere led to the 1947 US
Navy Highjump operation, combining the exploration
of Antarctica and the establishment of stations. This ex-
pedition led to numerous accidents, which confirmed
that military claim and occupation of Antarctica were
beyond the means of any nation. Most of these acci-
dents were related to errors in the positioning of ships
and aircrafts related to the proximity of the South Pole
and weather conditions. The staff of this huge expedi-
tion included the ionospheric scientist Lloyd Berkner,
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FIG. 2.3 Early synoptic map of Swedish origin (https://en.wikipedia.org/wiki/Timeline_of_meteorology#/
media/File:Synoptic_chart_1874.png). Sea level pressure is indicated, as well as an indication of surface
winds, demonstrating the success of the International Meteorological Organization at its foundation in 1873.
Until the early 1970s, isobar lines were drafted by hand to fit the results of the stations; it was only in the
last quarter of the 20th century that they were automatically plotted integrating data from other origins as
airplanes and satellites.

who after designing the radio communications of the
1929 Byrd Antarctica expedition multiplied the execu-
tive roles in scientific unions while continuing research.
He later played an important role in coordinating elec-
tronic operations for the US Navy in the Second World
War. His positions as a rear admiral, a presidential ad-
viser, and the president of the International Council of
Scientific Unions (ICSU) helped him to initiate in 1950
the International Geophysical Year (IGY) project and to
take the first steps of the Antarctic treaty. The purpose of
IGY was to extend the observations to the entire globe
with the cooperation of the Soviet Union and all other

scientifically active countries (National Academy Press,
1992). See Fig. 2.5.

The Second World War had seen an increase in
the number of weather ships, as these supported also
transatlantic air traffic. This network was officialized,
and these stations are shown in Fig. 2.4. Unfortunately,
their high cost led to their progressive retirement af-
ter IGY when their function was taken over by instru-
mented merchant ships and commercial airliners. Also,
beginning in 1960, experimental satellites were devoted
to meteorological observations until evolving into the
present network of civilian operational meteorological
satellites operated by both EUMETSAT and NOAA.

https://en.wikipedia.org/wiki/Timeline_of_meteorology#/media/File:Synoptic_chart_1874.png
https://en.wikipedia.org/wiki/Timeline_of_meteorology#/media/File:Synoptic_chart_1874.png
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FIG. 2.4 The 12 Arctic stations of the 1883 International Polar Year, NOAA, https://www.pmel.noaa.gov/
arctic-zone/ipy-1/index.htm.

FIG. 2.5 Photograph of one of the first preparatory meetings of the IGY at the US Naval Air Weapons
Station at China Lake (California) in 1950. The scientists present around Lloyd Berkner and Sydney
Chapman on this image represent three quarters of the world authorities on ionosphere and upper
atmosphere at the time. A similar group today would include much more than 10,000 participants
(Pr. Nicolet private archive).

https://www.pmel.noaa.gov/arctic-zone/ipy-1/index.htm
https://www.pmel.noaa.gov/arctic-zone/ipy-1/index.htm
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FIG. 2.6 Extension of the network of WMO stations from a European network in the middle of the 19th
century to the current network. The stations are color-coded to indicate the first year in which they provided
12 months of data (Hashemi, 2009).

EUMETSAT is a consortium of meteorological or-
ganizations regrouping most of Western and Central
Europe, including Turkey. It operates both its own net-
work of geostationary METEOSAT satellites and METOP
in polar orbit. Since the 2010s, it collaborates with
COPERNICUS Sentinel satellites managed by ESA for
the European Union. The data are used for forecasts by
the European Centre for Medium Range Weather Fore-
casts (ECMWF) to produce forecast maps for the en-
tire world. In 2019 these have a 20 km resolution, and
should reach the 5 km resolution during the 2020s. See
Fig. 2.6.

The total amount of data coming from all these
sources is difficult to estimate as the definition of
data covers all aspects of the raw and processed data.
Currently, COPERNICUS, which is not yet in com-
plete operation, generates about 10 petabytes per year;
ECMWF claimed in 2017 to have archived more than
130 petabytes of meteorological data, beginning essen-
tially in the 1980s, when EUMETSAT and NOAA data
flows started their exponential increase.1

Big Data have clearly become a part of the obser-
vational database. More and more, Big Data enter the
world of forecasts by techniques as assimilation, where
the model is tuned to minimize the gaps between obser-
vations and the forecast and the ensemble techniques
in which a large number of instances of one or several

1http://copernicus.eu/news/what-can-you-do-130-petabytes-data.

models are run in parallel and in which the final analy-
sis uses statistical techniques (WMO, 2012).
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