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Abstract

Trends of formaldehyde (HCHO) linked to anthropogenic activity over large cities located in the
Asian continent are calculated for the period 2005-2019 using the Quality Assurance for Essential
Climate Variables dataset from the Ozone Monitoring Instrument aboard the Aura satellite.
Contributions due to anthropogenic emissions are isolated by applying a correction based on
near-surface temperature in order to account for interference from local biogenic emissions. Strong

positive trends are derived over the Middle East and the Indian subcontinent (up to 3.6% yr—

I'and

2.4% yr~! respectively) where regulations of anthropogenic non-methane volatile organic
compound (NMVOC) emissions are currently limited. Weaker trends are observed over cities
located in China, where the air pollution action plan (2013) may have mitigated NMVOC trends
early on, but targeted legislature concerning VOC emissions was only recently introduced. HCHO
trends for cities located in South and Equatorial Asia are mostly not significant or very uncertain.
Cities located in Taiwan and Japan (regions in Asia where legislation has been in place since the

early 2000s) display mostly negative trends.

1. Introduction

Anthropogenic non-methane volatile organic com-
pounds (AVOCs) are key atmospheric constituents
affecting air quality and the climate through their role
in the formation of ozone and secondary organic aer-
osols. Emissions of AVOCs are significant in urban
and industrialized areas and their major sources
include fossil fuel and biofuel production and use,
industrial processes, solvent use, and road transport
(Ehhalt et al 2001). Bottom-up estimates indicate
an increase of ca. 40% of the global AVOC emis-
sions between 1970 and 2012, with Asia being the
largest contributor (Huang et al 2017). However,
regional and global AVOC emission inventories have
large uncertainties, due to the strong spatiotemporal
variability and high variety of their sources, and to
the relative lack of accurate information, particu-
larly in Asia. In comparison, NO, emissions and
trends are relatively better quantified, to a large
extent thanks to the monitoring of tropospheric NO,
columns from satellites (Duncan et al 2016). Due to

© 2022 The Author(s). Published by IOP Publishing Ltd

the harmful effects of AVOCs on human health and
the environment, those compounds are increasingly
attracting the attention of policy makers (He et al
2019, Zhao et al 2020). This has led to a gradual
tightening of VOC emission regulations, especially
in the US, Europe and Japan. However, these reg-
ulations are very diverse across Asian countries.
Whereas Japan and Taiwan promulgated AVOC emis-
sion controls since the early 2000s (Botta and Yama-
saki 2020, EPA-Taiwan (Environmental Protection
Administration) 2020), China and Korea formulated
VOC emission regulations only recently (Tsai 2016,
China VOCs Management 2021). In India, clean
air action plans for cities are currently developed
(Bhave and Kulkarni 2015, Ganguly et al 2020) but
no VOC regulations have been adopted so far, except
for benzene (Sekar et al 2019). In the Middle East
and central Asian countries, regulations are lim-
ited and emission standards vary among countries
(Sekar et al 2019). The success of VOC regula-
tions largely depends on monitoring, assessing and
controlling strategies, which are country-dependent
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(San et al 2018). In addition to regulations, factors
like population growth, economical and industrial
development, and new technologies, strongly influ-
ence the AVOC emissions and their evolution. The
estimation of emissions and their trends becomes
therefore very challenging.

A detailed comparison between available bottom-
up and top-down inventories (Elguindi et al 2020)
showed a general agreement that AVOC emissions
from China are increasing, although there are import-
ant discrepancies among the reported trends. Sim-
ilarly, the REASv3 bottom-up inventory over Asia
(Kurokawa and Ohara 2020) reported that most
inventories indicated increasing trends over China
after the early 2000s. Most inventories showed con-
tinuously increasing AVOC emissions over India
while for Japan, emissions have decreased in recent
decades. Despite these similarities in AVOC emissions
across different inventories, large differences are also
found.

Spaceborne observations of formaldehyde
(HCHO), a high yield intermediate in the oxida-
tion of the majority of VOCs released into the atmo-
sphere, have been widely used to constrain the VOC
emissions from biogenic and biomass burning origin
at global and regional scale (Millet et al 2008, Barkley
et al 2013, Bauwens et al 2016). However, the applic-
ation of inverse methods to derive AVOC emissions is
challenging due to the generally weak HCHO signal
due to anthropogenic sources relative to the biogenic
and pyrogenic emissions. A few studies focused on
heavily polluted regions where AVOCs are expec-
ted to have a strong contribution to the HCHO sig-
nal. Barkley et al (2017) reported significant positive
HCHO trends in anthropogenic point sources in the
Middle East over 20052014 using observations from
the Ozone Monitoring Instrument (OMI, Levelt et al
2006). OMI HCHO observations were used to detect
urban and industrial plumes in Nigeria (Marais et al
2014), eastern Texas (Zhu et al 2017), and eastern
China (Shen et al 2019), and as constraints in inver-
sion studies over China (Stavrakou et al 2017, Cao
et al 2018) and India (Chaliyakunnel et al 2019).

Using spaceborne observations to monitor the
efficacy of environmental regulations for controlling
VOCs is hampered by the masking effect of other
VOCs sources—primarily terrestrial vegetation
(Palmer et al 2006, Stavrakou et al 2009). Never-
theless, this study shows that emission trends can
be accurately monitored based on HCHO column
data retrieved from the OMI satellite instrument
over 15 years, from 2005 to 2019 around large cit-
ies in Asia. Since the interannual variability of HCHO
columns is affected by climate variability (Palmer et al
2006), primarily due to the dependence of biogenic
VOC (BVOC) emissions on temperature and solar
radiation, and because this contribution might be
significant even around large cities, we subtract the
contribution of climate variability to the long-term
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observed HCHO trends using the temperature cor-
rection method suggested in Shen et al (2019). This
study focuses for the first time on the detection of
AVOC trends over a large number of Asian cities
using satellite data, and aims to complement the cur-
rent body of literature on AVOC emissions in Asia
(e.g. Zheng et al 2018, Kurokawa and Ohara 2020).

The satellite-based urban HCHO trends are dis-
cussed and compared to the estimated AVOC emis-
sion trends in bottom-up inventories and to the
respective OMI NO, trends calculated over the same
cities. VOC and NOj are the key ingredients in the
formation of tropospheric ozone (Calvert et al 2015),
of which abundances have been generally increasing
over East and South Asia in the last decades (Nelson
et al 2021). Although road transport and other sec-
tors contribute significantly to both AVOC and NO,
emissions, the AVOC/NO, emission ratio is sector-
dependent and some of the major sources of NO, and
AVOC (power generation and solvent use, respect-
ively) are markedly different (Lietal 2017). Moreover,
emission controls might affect AVOC and NO, dif-
ferently, resulting in important differences regarding
their temporal evolution.

2. Methodology

We use HCHO and NO, data retrieved from the
OMI nadir-viewing instrument, both developed in
the framework of the EU FP7 project Quality Assur-
ance for Essential Climate Variables (Boersma et al
2017, De Smedt et al 2018) for the period 2005 to
the present. OMI follows a sun-synchronous, low-
Earth orbit with an Equator local overpass time of
ca. 13:45 and has a resolution of 13 x 24 km? at
nadir (Levelt et al 2006). The HCHO data set is based
on the differential optical absorption spectroscopy
algorithm described in De Smedtetal (2018). Here we
use observations with cloud fractions lower than 20%
in order to minimize potential effects from clouds.
The NO, data set is based on revised spectral fitting
features, accounting for improved absorption cross
sections, instrument calibration, and surface effects
(Boersma et al 2018, Zara et al 2018). The data are
processed according to the data quality recommend-
ations with a cloud filter set at 40%. For monthly
mean OMI HCHO and NO, column data, the detec-
tion limit is estimated at 2.5 x 10' molec cm™2
(De Smedt et al 2021) and at 1.0 x 10" molec cm ™2
(Compernolle et al 2020), respectively. The satellite
products were recently validated against MAX-DOAS
(Multiple AXis-Differential Optical Absorption Spec-
troscopy) ground-based observations (Wang et al
2019, Compernolle et al 2020, De Smedt et al 2021).
We focus on the summer months, from May to
September, as the prompt oxidation of VOCs in this
season provides a stronger HCHO signal compared
to winter, where HCHO levels are lower due to the
weak photochemical source of HCHO. Furthermore,
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the retrieval errors for both HCHO and NO, are
lower in summer, and are estimated to 40%—-60%, and
20%—55%, respectively, for the cities considered here.

We selected cities with a population of over
500000 inhabitants for China and India, or over
300000 inhabitants for other Asian countries
based on the Geonames geographical database
(www.geonames.org, last access: 10 November 2021).
We select cities where (a) the AVOC emission flux
based on the EDGARv4.3.3 emission inventory
(Huang et al 2017) over May—September is higher
than a threshold value, taken equal to 6 g m™2, and
(b) the ratio of anthropogenic to BVOC emissions is
higher than 3. Those thresholds were chosen to ensure
that the AVOC emission of the city is sufficiently
important and is significantly larger than the local
biogenic emissions. The biogenic emissions (sum of
isoprene, monoterpenes, and methanol) are obtained
from the MEGAN-MOHYCAN model (Miiller et al
2008, Stavrakou et al 2018). The above criteria lead
to a total of 133 cities in 31 Asian countries for fur-
ther analysis (listed in table S1 (available online at
stacks.iop.org/ERL/17/015008/mmedia)). To gener-
ate the OMI HCHO time series for these cities, all
observations in an overpass area of a 30 km radius
around the city centers are averaged per month. The
monthly mean is not considered when less than five
observations are available in a given month. A smal-
ler radius (e.g. 15-20 km) would strongly reduce
the amount of available observations per month and
would lead to noisier monthly averages. Moreover,
in order to remove potential interferences from fire
emissions, we exclude specific regions and months
with fire episodes. Such regions are the North China
Plain (32°—40° N, 112.5°-120° E) in June and the
Indo-Gangetic Plain (26°-34° N, 70°-86° E) in May,
due to agricultural residue burning (Liu et al 2015,
Stavrakou et al 2016, Bray et al 2019), and the entire
equatorial band (10° S-10° N) in September, which
coincides with the beginning of the fire season.

To take out the effects of climate variations on
the interannual variability of the HCHO columns,
we apply a temperature-correction method on the
monthly HCHO columns following the approach of
Zhu et al (2017) and Shen et al (2019). To this
purpose, the monthly mean HCHO columns for
the selected cities between May and September over
2005-2019 are regressed onto the monthly averaged
daily maximum surface air temperature, obtained by
the ECMWEF ERA5 (European Centre for Medium-
Range Weather Forecasts Reanalysis Fifth Genera-
tion) reanalysis fields (Hesbach et al 2020). The fit-
ted temperature dependency is then subtracted from
the original time series. Trends are calculated using
a linear regression of the annual May-to-September
mean corrected columns and are considered signific-
ant when their absolute value exceeds their 1 — ¢
uncertainty.

M Bauwens et al

As for the HCHO columns, we use OMI NO, data
within 30 km of the city centers of the selected cities
(table S1) between May and September for all years of
the 2005-2019 period and derive urban NO, trends
using a linear regression method.

3. Results

The HCHO trends for the selected cities are illustrated
in figure 1, whereas the trends detected as being sig-
nificant are detailed in figure 2. Of the 133 studied
cities, significant trends are found for 77 cities (table
S1). Positive HCHO trends are found for most urban
areas, and clear regional patterns can be identified.

The trends observed over China are relat-
ively weak and mostly positive, typically between
+0.5% yr~! and +1.5% yr~! and negative in only
two cities, namely Dongguan in the Pearl River Delta
and Chengdu in western China. In the Indian sub-
continent, strong positive trends are observed, estim-
ated on average at 1.4% yr~! and ranging between
0.7 &+ 0.5% yr~! (Karachi) and 2.4 4+ 0.7% yr~—!
(Peshawar). Positive trends are also found over
the Middle East and central Asia reaching up to
3.6 = 0.6% yr~! (Karaj, Iran). No significant trends
were observed over Istanbul and Ankara in Turkey.

Trends are often not significant in southeast
and equatorial Asian countries, except over Bandung
(Indonesia), Cebu city (Philippines) and Hanoi (Viet-
nam), with trends exceeding 2% yr~!.

Significant negative trends are found in Japan,
estimated on average at —1.5% yr ! for all considered
cities. In Taiwan, the HCHO trends are also mostly
negative, except in Taichung.

Figure 3 compares the temporal evolution of
(temperature-corrected) HCHO columns and NO,
columns, relative to 2005, for a selection of 25 cit-
ies. The 2005-2019 NO, trends for all 133 cities
are shown figure S1. The Chinese megacities gener-
ally exhibit strong reductions in NO, levels between
2005 and 2019 (up to —60%). For most cities, NO,
columns increase in the first part of the period
(2005-2010/2014) and decline afterwards. Over large
industrial centers such as Shanghai, Guangzhou and
Shenzhen, the NO, decline started already after 2007.
This is in contrast with the HCHO column evol-
ution in Chinese cities, with generally either posit-
ive (figure 2) or negligible trends (e.g. Shanghai and
Guangzhou, figures 3(c) and (d)).

A notable exception is Chengdu, where the
HCHO trend is negative (—1.2 £ 0.6% yr~'). The
net reduction over Chengdu between 2005 and 2019
is 20% for HCHO and 60% for NO,.

Over large Indian and Pakistani cities
(figures 3(k)—(0) and (w)), NO, columns display only
small trends between 2005 and 2019, and declines are
even found after 2013 in Delhi and Chennai, whereas
HCHO columns increased over most cities. Over
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Figure 1. Temperature-corrected HCHO trends (in % yr—!) over the Asian cities considered in this study (133). Colored circles
denote cities for which significant trends are detected (77), white circles denote cities with no significant trends (56).
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Figure 3. Normalized temperature-corrected HCHO (blue), and NO, columns (red) for a selection of 25 large Asian cities. The
annual averages are calculated using data retrieved between May and September.

the Arabian Peninsula, NO, decreases while HCHO
increases, by up to +37% in Riyadh between 2005
and 2019. In Iraq, Iran, Uzbekistan (Tashkent) and
Vietnam (Hanoi) significant positive trends in both
HCHO and NO, columns are found. In Tokyo and
Taipei, we observe simultaneously negative changes
in HCHO (—22% and —16%, respectively) and NO,
columns (—56% and —28%) between 2005 and 2019.

4. Discussion

The HCHO trends over China presented above for
2005-2019 are consistent with the predominantly
positive anthropogenic trends derived over China
between 2005 and 2016 by Shen et al (2019) (up
to +2.2% yr~'). In line with their analysis, stronger
trends are observed over the Yangtze River Delta and
the North China Plain. The important reduction in
HCHO and NO, observed over Chengdu and in the
Pear] River Delta (Dongguan) shows that local efforts
to counteract pollution are also evident from space
observations. In those regions, the implementation

of air pollution control policies has shown improve-
ments in recent years (Gao et al 2019, 2021),
whereas AVOCs have become one of key pollution
control targets (Gao et al 2019). In August 2017,
an Air Pollution Prevention campaign, addressing
AVOC emissions, was performed in Chengdu lead-
ing to immediate AVOC emission reduction of 25%
(Tan et al 2020), likely contributing to the HCHO
column decline observed over Chengdu in 2017
(figure 3).

In India and Pakistan, the strong positive HCHO
trends are in line with the strong economic growth
and near-absence of VOC emission regulations
in the fast growing cities of the Indian subcon-
tinent (Ganguly et al 2020). The strong trends
observed over Delhi (+2.1 + 0.6% yr~!) and Kanpur
(+1.2 £ 0.5% yr—!) are consistent with the inde-
pendent satellite-based analysis of Vohra et al (2020),
which derived similar HCHO trends (+1.9% yr~! for
Delhi, +1.0% yr_1 for Kanpur). Note that their work
corrected for the background contribution of longer-
lived VOCs but not for biogenic contributions.
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Figure 4. Relative change in NMVOC emissions for a selection of Asian countries according to the CAMS-ANTv4.2 R1.1
inventory between 2008 and 2019 and the REASv3 inventory between 2005 and 2015. The total emission per country in 2008
(used for normalization) is given inset.

Furthermore, our results for the Middle East are
qualitatively in line with Barkley et al (2017), who
also deduced strong HCHO trends in urban loca-
tions over 2005-2014 using OMI observations. In
agreement with our analysis, they reported signi-
ficant HCHO trends along the Persian Gulf coast,
between 1% and 3% yr~!, and in Riyadh (1.97% yr—!
vs 2.5 £ 0.7% yr~! in this study). In Bagdad, they
found an increased NO, trend, not seen in HCHO
data, which was attributed to increased NO, emis-
sion from the Daura refinery located close to the city
(Barkley et al 2017).

In south and equatorial Asia, the HCHO trends
are more uncertain and are significant in only 4 out
of the 16 cities considered. This can be explained by
the comparably lower HCHO levels and larger asso-
ciated uncertainties in these regions and by the strict
cloud filter used (20%) which removes a large frac-
tion of the data. In addition, uncertainties in the bio-
genic emissions around cities of equatorial Asia might
cause larger errors in the derived trends. In Cebu
and Bandung, although the trends are significant,
their high uncertainty reflects the strong interannual
column variation in these cities (+2.9 + 1.0% yr~!
and +3.2 £2.6% yr—1).

The observed declining trend in Phnom Penh
(—1.1 & 0.6% yr~!) is at odds with the increase of
AVOC emissions reported in San et al (2018), which
is based on economic activity and industrial data. The
discrepancy could be related to the large deforestation
rates observed in the humid primary forests located
within a radius of 150 km around the city (Hansen
et al 2013). When considering the effects of land
use changes on isoprene fluxes (Opacka et al 2021),
the isoprene emissions around Phnom Penh over
2005-2019 are found to decline by about 1% yr—!,
suggesting that the trend in HCHO columns might

be partly due to forest loss in the regions surrounding
Phnom Penh.

The significant positive HCHO trend in Hanoi
(+2.4 + 0.7% yr~!), one of the fastest growing
cities of Asia, is well supported by the increase
of 36% in AVOC emissions suggested by the
CAMS-ANTV4.2 R1.1 (Granier et al 2019) bottom-
up inventory between 2008 and 2019. Figure S1 shows
relatively weak NO, trends over most cities in south
and equatorial Asia with the exception of the strong
positive trends observed over the fast-developing cit-
ies of northern Vietnam.

Finally, the negative HCHO trends in Japan and
Taiwan reflect the VOC emission regulations that
have been promulgated earlier on, compared to other
Asian countries, in combination with a weaker pop-
ulation growth. Over Japan, where the population
growth is <+0.5% yr~! for all cities under consider-
ation (United Nations Department of Economic and
Social Affairs 2021), satellite observations are in line
with ground-based observations of Wakamatsu et al
(2013), which showed continuously declining AVOC
concentrations since 1970. It was estimated that VOC
emissions from stationary sources in Japan were
reduced by 42% between 2000 and 2009 (Wakamatsu
et al 2013). In Taiwan, we find negative HCHO
trends in all cities except for Taichung. This may
reflect the stronger population growth in Taichung
(+1.8% yr~!), whereas the population growth for the
other Taiwanese cities is much smaller (<+1% yr~—!,
United Nations Department of Economic and Social
Affairs 2021).

The observed HCHO trends agree qualitat-
ively with the AVOC emission trends estimated
by the CAMS-ANTv4.2 R1.1 (Granier et al 2019)
and the REASv3 (Kurokawa and Ohara 2020)
bottom-up inventories (figure 4). Both datasets
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suggest increasing emissions in most Asian countries
and declining emissions in Japan and Taiwan. While
the increasing AVOC trends in most Asian countries
are consistent with the trends in figure 1, the mag-
nitude of the trends is not always consistent with
OMI observations. Over Iran, the continuous AVOC
emission decrease according to CAMS (Copernicus
Atmosphere Monitoring Service) is not supported by
OM]I, in particular in Tehran where HCHO is found
to increase rapidly after 2011.

More pronounced negative HCHO trends are
derived over Japan than over Taiwan, in better con-
sistency with the emission estimates from REASv3
than those from CAMS. Additionally, our analysis
suggests similar HCHO trends in India and Pakistan
while those over Chinese cities are much weaker.
REASv3, however, suggests similar AVOC emission
trends for all three countries and CAMS estimates
similar increases in AVOC emissions for India and
China, but stronger trends over Pakistan (figure 4).
Note however that the REASv3 inventory does not
extend after 2015, when AVOC emissions over China
were at their maximum according to CAMS, in good
consistency with the observed evolution of HCHO
columns (figure 3).

The observed differences between trends in
HCHO and NO,; are also present in the AVOC
and NO, emissions from the CANT-ANTv4.2 R1.1
inventory (figure S2). This is especially true for China,
where the Air Pollution Prevention and Control
Action Plan has been introduced in 2013, but AVOCs
were not specifically targeted until 2018 (China VOCs
Management 2021). The differences in NO, and
HCHO trends originate from the fact that they are
not emitted by the same anthropogenic activities.
For instance, solvents significantly contribute to the
total AVOC emissions while they account for only a
small fraction of NO, emissions (figure S3). In con-
trast, the energy sector strongly contributes to the
NO, emissions but not to AVOCs. The discrepan-
cies between AVOC emissions and NO, are especially
pronounced in China where industrial sources and
solvent use were the main drivers of the rise of AVOC
concentrations while reduced emissions from resid-
ential biofuel use and on-road vehicle exhaust (which
account for a large fraction of NO, emissions) mit-
igated the rapid growth rates in the last decade (Li
et al 2019). The increase in AVOCs, in contrast with
the large emission decreases of SO, (since 2005) and
NO; (since 2011) in China, has been put forward as a
potential reason for recent increases in surface ozone
concentrations in China (Ma et al 2016, Lietal 2019).

5. Conclusion
We used OMI satellite observations from 2005 to 2019
to derive long-term trends in HCHO columns, cor-

rected for climate variability, over 133 cities in Asia.
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Significant positive trends were observed in 64 cities,
and negative trends in only 13 cities. Although the
general patterns of OMI column trends are consist-
ent with the emission inventories, several important
discrepancies were found. AVOC emissions appear
to increase in Iran, in particular in Tehran, contra-
dicting the decline found in CAMS. In India as well,
the robust positive trend of OMI columns seems
underestimated by CAMS. Strong positive HCHO
trends are observed over the Middle East. Generally
positive, but weaker trends are found in China. As
Chinese VOC regulations were only recently imple-
mented, HCHO trends between 2005 and 2018 do
not yet validate these efforts. Nevertheless, the effect
of AVOC regulations is clearly seen in two import-
ant megacities (Dongguan and Chengdu). Finally,
over Japan and Taiwan, negative trends are found,
demonstrating that air quality regulations target-
ing AVOC emissions are effective in these coun-
tries. In Japan in particular, those regulations appear
even more effective than suggested by the CAMS
inventory. The contrast between the observed evol-
ution of NO, and HCHO columns over Asian cit-
ies illustrates well that emission controls targeting
NO, sources have little or no impact on AVOC emis-
sions, in particular over China, as the major sources
of NO, and AVOC are markedly different, and as
the AVOC and NO, emission factors are affected
differently by emission controls. Those important
differences between HCHO and NO, trends high-
light the importance of legislation targeting specific-
ally VOC emissions to improve air quality. The lim-
ited number of initiatives to regulate AVOC emis-
sions in many Asian countries is evidenced by the
detected positive HCHO column trends compared to
countries were policy measures have been in place
for a longer time, or where they were recently
introduced.
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