
1.  Introduction
Nitrogen oxides (NOx = NO + NO2), sulfur dioxide (SO2), and carbon monoxide (CO) are important air pollut-
ants that affect atmospheric chemical processes and oxidative potentials (Seinfeld & Pandis, 2012). Anthropo-
genic SO2 emissions mainly come from coal combustion in power plants; major sources of anthropogenic NOx 
are from combustion in the transportation and energy sectors; CO emissions are mainly from incomplete com-
bustion (Hoesly et al., 2018; McDuffie et al., 2020). Bottom-up methods estimate NOx, SO2, and CO emissions 
using activity rates and species emission factors, but these inventories have uncertainties of more than 100% and 
discrepancies of more than a factor of two at the national scale in Asia, especially for CO and in India (Elguindi 
et al., 2020; Hoesly et al., 2018; Kurokawa et al., 2013; Lu et al., 2011; McDuffie et al., 2020; Zhang et al., 2009; 
Zhao et al., 2011). Satellite observations have been applied to estimate pollutant emissions through inverse meth-
ods, including plume and box models (Beirle et al., 2011, 2019; Duncan et al., 2013; Fioletov et al., 2016, 2017; 
Goldberg et al., 2019; Li, McLinden, et al., 2017; Liu et al., 2018; McLinden et al., 2016), mass balance (Lamsal 
et al., 2011; Martin et al., 2003), 4D-Var (Jiang et al., 2015, 2017; Müller & Stavrakou, 2005; Qu et al., 2017; Qu, 
Henze, Li, et al., 2019; Wang et al., 2016), and Ensemble Kalman Filter (Ding et al., 2015; Gaubert et al., 2020; 
Miyazaki et al., 2012). Assimilations of observations of multiple species further improved inversion performance 
by accounting for the impacts of emission adjustments on the concentrations of unobserved species (Miyazaki 
et al., 2017; Qu, Henze, Theys, et al. (2019); Zhang et al., 2019).

Abstract  Top-down estimates using satellite data provide important information on the sources of air 
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NO2, OMI SO2, and MOPITT CO observations to estimate NOx, SO2, and CO emissions in East Asia during 
2005–2012. Posterior evaluations with surface measurements show reduced normalized mean bias (NMB) 
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emissions and attributes their drivers to industry and energy activities. The CO peak in 2007 in China is driven 
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Plain Language Summary  Satellite observations are widely used to estimate air pollutant 
emissions and evaluate their trends. We design a new method based on Bayesian statistics to estimate emissions 
of major air pollutants in East Asia according to their sources (e.g., energy, industry, transportation, etc.). 
Results from this approach show better agreement with independent surface measurements than the previous 
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In addition to species-based top-down estimates that adjust the total amount of emissions without differentiat-
ing their sources, observations of multiple species can assist the separation of emissions from different source 
sectors such as industry and transportation, since the ratios of CO to NOx and CO to SO2 are unique markers of 
emissions from different fuel types and combustion sources (Silva & Arellano, 2017; Tang et al., 2019). Optimiz-
ing emissions by sector provides valuable information regarding biases or mischaracterized trends in a specific 
activity, and therefore assists in correcting these emission inventories or interpreting atmospheric chemistry sim-
ulations that use these emission inputs. A sector-based inversion also more consistently adjusts emissions across 
species and provides a more natural framework for realistically characterizing the spatial correlations of emis-
sions than species-based inversions. Sector-based inversions can be conducted using linear regression (de Foy & 
Schauer, 2019; Fioletov et al., 2021), spatial separation between regions dominated by different sources (Jeaglé 
et al., 2005), tracer correlations, or through a variational framework formulated with sector-specific activities as 
the variable parameter. The advantage of the last approach is the capability to separately evaluate emission factors 
and activity rates from the bottom-up inventory without externally specifying ratios of pollutants and chemistry 
regimes.

Here we develop a sector-based multispecies 4D-Var data assimilation framework and apply it to constrain the 
activity rates and species emission factors of NOx, SO2, and CO. This framework relates column densities to emis-
sions and accounts for the uncertainties in observations and the biases of satellite retrievals at the various over-
pass times by comparing observations with concurrent simulations. We therefore are able to estimate the trends 
of sectoral emissions from anthropogenic and biomass burning sources in East Asia for the period 2005–2012. 
Due to expensive computational costs, we only perform inversions for each January of the 8 years, since natural 
emissions in January are relatively small compared to other months in East Asia.

2.  Methods
2.1.  Observations and Model

We use NO2 and SO2 observations from OMI and CO observations from MOPITT. OMI has a footprint of 
13 × 24 km at the nadir and an overpass time of about 13:45 local time. We use the NASA standard product 
OMNO2 (Level 2, Version 3) tropospheric NO2 slant column density (Krotkov et al., 2017) and the Royal Belgian 
Institute for Space Aeronomy (BIRA) SO2 Level 2 product (Theys et al., 2015). We convert the simulated NO2 
and SO2 mixing ratios to slant column densities using scattering weights following Qu et al. (2017); Qu, Henze, 
Li, et al. (2019); Qu, Henze, Theys, et al. (2019), and filter our data with low quality (see details in Supporting 
Information S1). CO vertical profiles are from the MOPITT Level 2 product Version 8 multispectral retrieval 
(Deeter et al., 2019). MOPITT has a footprint of 22 × 22 km and overpasses the equator at 10:30 local time. It 
provides global coverage every 3 days. Observations in both the thermal-infrared (TIR) and near-infrared (NIR) 
enable retrievals of CO vertical profiles (Worden et al., 2010). We assimilate the surface layer CO concentrations 
following Jiang et al. (2015) because it better represents surface emissions and is less affected by model transport 
errors.

We use monthly mean surface measurements of NO2 and SO2 concentrations over 669 sites from the China 
National Environmental Monitoring Center to evaluate the prior and posterior simulations in January 2010. The 
NO2 measurements are made by a chemiluminescence analyzer with a molybdenum converter, which has inter-
ferences from NOx oxidation products. We therefore apply a correction factor following Lamsal et al. (2008) to 
the simulated NO2 to account for this impact in the evaluations. There are no national surface CO measurements 
available in China during the studied period. We average the measurements on a 0.5° × 0.667° grid, for a total 
of 248 grid cells.

The implementation of the sector-based inversion framework is based on the GEOS-Chem adjoint model (Henze 
et al., 2007) v35f. GEOS-Chem is driven by the Goddard Earth Observing System (GEOS-5) reanalysis meteor-
ology field from the NASA Global Modeling and Assimilation Office (GMAO) (Bey et al., 2001). We perform 
nested-East Asia (70°−150°E, 0°–50°N) simulations at a horizontal resolution of 0.5° × 0.667° with dynamic 
boundary conditions from a global 4° × 5° simulation. The GEOS-Chem adjoint model includes the adjoint code 
for model processes of chemistry, transport, and wet and dry removal. It provides an efficient way to calculate the 
sensitivity of scalar functions of model variables (e.g., column densities and concentrations) to model parameters 
(e.g., emission scaling factors) (Henze et al., 2009; Kopacz et al., 2009).
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GEOS-Chem uses a detailed Ox-NOx-hydrocarbon chemical mechanism (Bey et  al.,  2001) and a sulfur cycle 
simulation based on the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model 
(Chin et al., 2000). The concentration of OH and chemical losses of CO, NOx, and SO2 are simulated by the 
model. The gas and particle-phase partitioning is calculated through the aerosol thermodynamics scheme from 
Park et al. (2004). Dry deposition and wet deposition in GEOS-Chem follows Wesely (1989), Wang et al. (1998), 
and Liu et al. (2001). Anthropogenic emissions of NOx, SO2, NH3, CO, NMVOCs, and primary aerosol are from 
HTAP (2010) inventory version 2 (Janssens-Maenhout et al., 2015). Three-hourly biomass burning emissions 
are from GFED4 (Giglio et al., 2013). Other nonanthropogenic emissions follow the setup in Qu, Henze, Theys, 
et al. (2019).

CO concentrations on January 1 of every year during 2005–2012 are adjusted to match MOPITT observations 
given the relatively long lifetime of CO and significant low biases of CO simulations (Barré et al., 2015; For-
tems-Cheiney et al., 2011; Gaubert et al., 2016; Jiang et al., 2013; Kopacz et al., 2010; Zhang et al., 2019). We 
scale CO concentrations on January 1 by the ratio of averaged MOPITT and simulated CO column over the last 
week of December in the previous year and repeat the scaling to the resulting CO concentrations by applying the 
ratio in the first week of January in the inversion year. The global mean CO concentration at 0:00 GMT on Janu-
ary 1, 2010 increases by 34% and the error weighted difference between simulated CO and MOPITT observations 
reduces by 79% after the scaling.

2.2.  Sector-Based 4D-Var Inversion

We implement weekly sector-based scaling factors for emissions of NOx, SO2, and CO. In the bottom-up inven-
tory, emission of species l in sector k at a grid cell is expressed as:

𝐸𝐸a,𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴a,𝑘𝑘𝐹𝐹a,𝑘𝑘𝑘𝑘𝑘,� (1)

where the subscript “a” stands for a priori, Aa,k is the prior activity rate, Fa,k,l is the prior emission factor, Ea,k,l is 
the resulting prior emission. k ranges from 1 to 7 representing each of the seven sectors of transportation, industry, 
residential, aviation, shipping, energy, and biomass burning. l is the index for species.

Traditional top-down estimates optimize species scaling factors that are applied to the prior emissions as:

�� = ��
∑7

�=1
�a,��a,�,� = ���a,� ,

� (2)

where Ea,l and El are the prior and posterior total emissions for species l. σl is the species emission scaling factor.

The cost function for an inversion using species scaling factors is

�1(��,�) =
1
2
∑

�N∈Ω
(�(�N) − ���obsN)T�−1

obsN(�(�N) − ���obsN)

+1
2
�
∑

�S∈Ω
(�(�S) − ���obsS)

T
�−1

obsS(�(�S) − ���obsS)

+ 1
2
�
∑

�C∈Ω
(�(�C) − ���obsC)T�−1

obsC(�(�C) − �obsC)

+1
2
��1

∑3
�=1 (�� − �a, �)T�−1

a,� (�� − �a,�)

= �o +
1
2
��1

∑3
�=1 (�� − �a, �)T�−1

a,� (�� − �a,�).

� (3)

𝐴𝐴  is the observation operator that maps species concentrations of NO2 (cN), SO2 (cS), and CO (cC) to observa-
tion space to be comparable with OMI NO2 slant column density (SCDobsN), OMI SO2 slant column density 
(SCDobsS), and surface CO concentration from MOPITT (cobsC). SobsS, SobsN, and SobsC are the observation error 
covariance matrices, assumed to be uncorrelated, with retrieval uncertainties of NO2, SO2, and CO along the 
diagonal. We average monthly OMI (𝐴𝐴 𝐒𝐒𝐒𝐒𝐒𝐒obsS ) and GEOS-Chem (𝐴𝐴 (𝒄𝒄S) ) SO2 SCDs overpassing each grid cell 
following Qu, Henze, Li, et al. (2019), Qu, Henze, Theys, et al. (2019). We scale SO2 and CO prediction errors 
by α (the number of NO2 observations to the number of grid cells that have SO2 observations) and β (the number 
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of NO2 to CO observations) to weight all three observation terms equally in the cost function (Qu, Henze, Theys, 
et al. (2019)). Ω is the domain (in time and space) where observations are available.

Sa, l is the prior error covariance matrix for each species. The diagonal elements of Sa, l are estimated to be 0.4 for 
anthropogenic NOx and SO2, 1.0 for anthropogenic CO (Li, Zhang, et al., 2017), 0.2 for biomass burning SO2, 
1.4 for biomass burning NOx, and 0.3 for biomass burning CO. These uncertainties are further adjusted by a 
regularization parameter, γr1, to balance model error and prior constraints. We chose γr1 = 100 for January 2010, 
based on the minimization of total error (Henze et al., 2009), shown in Figure S1 in Supporting Information S1. 
σa,l is the vector of prior scaling factors and equal to 1. Off-diagonal error correlations are not specified given that 
emissions from different sectors have different correlation lengths.

For the sector-based inversion, we apply scaling factors 𝐴𝐴 𝐴𝐴𝑘𝑘 to activity rates of all seven sectors from Equation 1, 
and 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘 to the emission factors of NOx, SO2, and CO in transportation, industry, and residential sectors:

𝐸𝐸𝑘𝑘𝑘𝑘𝑘 = 𝜎𝜎𝑘𝑘𝐴𝐴a,𝑘𝑘𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝐹𝐹a,𝑚𝑚𝑚𝑚𝑚,� (4)

where k ranges from 1 to 7 representing the seven sectors in Equation 1, l ranges from 1 to 3 representing NOx, 
SO2, and CO, and m ranges from 1 to 3, representing transportation, industry, and residential sectors. Implement-
ing spatially independent adjustments of emission factors provide more accurate quantifications of emissions (Li, 
Zhang, et al., 2017) and their trends. 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚 corrects the errors in emission factors when one species is overestimated 
and another is underestimated in the same sector, in which the cost function cannot be reduced by simply adjust-
ing the activity rates. Optimizing only these three sectors with the largest sensitivity to reduce the cost function 
avoids introducing more control parameters than the effective number of observations, which would lead to an 
under-constrained inverse problem and makes the algorithm harder to find solutions. There are 16 scaling factors 
(7 k + 3 m × 3 l), 195,536 parameters (12,221 grid × 16 scaling factors), and 533,017 observations (436,286 
NO2 + 86,960 CO + 9,771 grids with SO2 observations). However, we recognize that half of the observations are 
over the ocean and observations may not provide independent information from each other regarding emissions. 
The cost function in this framework is written as
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where σa,k and σa,m,l are the vectors of prior scaling factors and are equal to 1. Sa,k is the prior error covariance 
matrix of emission scaling factors for each sector, with their exponential decayed spatial correlation specified in 
the off-diagonal term. Based on the uncertainties from bottom-up emission inventories, we assume the diagonal 
elements of Sa,k to be 0.6 for transportation, 0.7 for industry, 1.1 for residential, 0.6 for aviation, 0.6 for shipping, 
0.5 for energy (Kurokawa et al., 2013; Lu et al., 2011; Zhang et al., 2009), and 0.3 for biomass burning (Stibig 
et al., 2014) in the East Asia domain. The correlation lengths of the prior error covariance matrix are estimated 
based on the extent of land type coverage for biomass burning and the scales that activity rates for each anthropo-
genic sector in the MEIC inventory are collected. According to the bottom-up estimates, we use a value of 100 km 
for transportation (Zheng et al., 2014), 200 km for industry (Li, Zhang, et al., 2017; Streets et al., 2006), 200 km 
for residential (Saikawa et al., 2017), 100 km for aviation, 150 km for shipping, 0 km for energy (Li, Zhang, 
et al., 2017), and 200 km for biomass burning (Stibig et al., 2014). Sa,m,l is the prior error covariance matrix of 𝐴𝐴 𝝈𝝈𝑚𝑚𝑚𝑚𝑚 , 
which we assume to have the same correlation lengths as the corresponding sectors in Sa,k. Following Kurokawa 
et al. (2013), the diagonal elements of Sa,m,l are 0.6 for industrial NOx, 0.5 for industrial SO2, 1.0 for residential 
NOx, 0.6 for residential SO2, 0.6 for transportation CO, 0.5 for transportation NOx, and 0.4 for transportation SO2. 
The inversion results are sensitive to the assumed uncertainties, which determine the extent to which emissions 
can be adjusted by the observations. We therefore reduce the uncertainties for residential and industrial CO from 
1.7 (Kurokawa et al., 2013) to 1.1 and from 1.2 (Kurokawa et al., 2013) to 1.0 to avoid unrealistically small (i.e., 
zero) emissions in the posterior estimates. The correlation length affects how similar emission adjustments are 
in the adjacent grid cells. The regional scale inversion results are insensitive to the correlation length. We choose 

𝐴𝐴 𝐴𝐴𝑟𝑟2  = 100 for January 2010 (Figure S1 in Supporting Information S1). Regularization parameters in other years 
are scaled by the ratio of the number of NO2 observations with those in January 2010 (Table S1 in Supporting 
Information S1).
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3.  Results
We average weekly posterior emissions over January in the following presentation to reduce random noise. Prior 
simulations underestimate NO2 and CO by 30%–40% over North China Plain (NCP) and Guangdong province 
in January 2010 (see Figure S2 in Supporting Information S1). SO2 simulations are mostly biased low north of 
35°N by ∼20% but are biased high by more than 50% south of 35°N. Posterior simulations reduced these biases 
and decrease the cost functions by 31% in the species-based inversion and 26% in the sector-based inversion, 
demonstrating the improved fit to observations.

Figure 1 shows the emission increments in the industry, residential, and transportation sectors in January 2010. 
The emission adjustments are in the same directions and have similar spatial patterns for all three species. Major 
corrections for NOx and SO2 emissions are from activity rates. Emissions in the North China Plain and Northeast 
China show large adjustments, consistent with the region of large adjustments from species-based inversions 
(Gaubert et al., 2020; Miyazaki et al., 2020; Qu, Henze, Theys, et al., 2019). The inversion suggests that the 
industry activity rates are underestimated by 5–15% in the HTAPv2 inventory over eastern China and central and 
northern India, but overestimated by less than 3% in the Sichuan and Shaanxi provinces of China. The residential 
activity rates are underestimated by more than 15% in HTAPv2 except for Tibet Plateau, southern India, southern 
Thailand, Cambodia, and central Vietnam. The transportation activity rates are underestimated by 10% in eastern 
China and central and northern India. The relatively consistent adjustments of sectoral emissions at the province 
(e.g., SO2 in Shandong of China and residential emissions in Shandong and Hebei of China) or national level 
(e.g., CO in North Korea) can be explained by the relatively homogeneous emission factors and activity rates at 
these spatial scales (Li, Zhang, et al., 2017).

Figure 1.  Sectoral emission increments in January 2010. We only show emissions from the industry, residential, and transportation sectors, which have the largest 
sensitivities to decrease the cost function.
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Figure S3 in Supporting Information S1 shows the prior emissions summed over all sectors and their increments. 
Compared to the species-based inversion, the sector-based inversion shows smaller upward adjustments of NOx 
and SO2 emissions and larger upward adjustment of CO emissions over the North China Plain and larger down-
ward adjustments of NOx over India.

We focus on China and India in the following presentations since the inversion framework mainly optimizes 
anthropogenic emission sectors. Therefore, it is not ideal for regions where natural and background sources are 
significant (Qu et al., 2021; Silvern et al., 2019) and satellite retrievals have large uncertainties (Qu, Henze, Li, 
et al., 2019). On a national scale, all top-down NOx emissions are smaller than the HTAPv2 emissions by 21–26% 
in China and 28% in India (Figure S4 in Supporting Information S1). Top-down SO2 emissions are within 4% 
of the HTAPv2 estimates in China and are smaller by 39–61% in India, suggesting overestimates of bottom-up 
SO2 emissions in India as pointed out by Qu, Henze, Li, et al. (2019) and Miyazaki et al. (2020). Top-down CO 
emissions are larger than the HTAPv2 estimates by 43–62% in China and 25–38% in India, and larger than the 
top-down estimates by Jiang et al. (2017) by 83–107% in China and 19–32% in India. The discrepancies in top-
down CO estimates can be explained by the different assumptions of uncertainties in the bottom-up emissions, the 
inclusion of other chemical species in this study which adjusts OH fields (Qu, Henze, Theys, et al., 2019; Zhang 
et al., 2019), the use of surface layer CO concentrations instead of CO profiles (Jiang et al., 2013, 2017), and the 
different versions of MOPITT CO retrievals which cause up to 158% discrepancies in the CO budget over East 
Asia (Zhang et al., 2019).

The sector-based posterior simulations show larger surface NO2 than the species-based one except for North 
China Plain, industrial regions in India, and parts of Myanmar and Cambodia; larger surface SO2 except for Inner 
Mongolia, Shandong, Yangtze River Delta, and parts of Cambodia; and larger surface CO by up to 104% (Figure 
S5 in Supporting Information S1). Figures 2 and S6 in Supporting Information S1 show that the sector-based 
posterior simulations have the best agreement with the surface NO2 and SO2 measurements, although emission 
change alone does not significantly improve the model performance. The species-based posterior estimates have 

Figure 2.  Monthly mean surface SO2 and NO2 concentrations from GEOS-Chem in January 2010. Correction factors are 
applied to the GEOS-Chem NO2 simulations to account for the interference of NOx oxidation products in the measurements. 
Surface measurements averaged over 248 grid cells are overlaid. The sector-based posterior simulations have the smallest 
normalized mean bias (NMB) and NMSE for both NO2 and SO2 when compared with surface measurements, shown inset.
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larger biases than the prior simulations due to the incorporation of CO observations and not considering their 
co-emissions—previous species-based inversion using only NO2 and SO2 observations show reduced bias for 
NO2 (Qu, Henze, Theys, et al., 2019). The negative biases in NO2 concentrations can be explained by the low bias 
of NO2 satellite retrievals owing to the use of spatially coarse prior profiles (Laughner et al., 2016), uncertainties 
in NO2 loss rate in the coarse resolution simulation (Valin et al., 2011), incapability to adjust emissions upward 
when NO2 is below the satellite detection limit, and the lack of representation of the spatial gradients in NO2 
measurements in coarse resolution simulations (Qu et al., 2020). Following Qu et al. (2020), the resolution bias 
associated with averaging 0.1° × 0.1° pseudo-NO2 measurements to the 0.5° × 0.667° grid is estimated to be 16%. 
Accounting for this reduces the NMB for prior and posterior simulations to −24%, −25% (species-based), and 
−22% (sector-based). Since the model grid cells are smaller than the smearing length scale of SO2 (e.g., 260 km 
in the summer and 960 km in the winter using the definition of smearing length from Palmer et al., 2003 and 
SO2 lifetimes from Lee et al., 2011), we expect small resolution bias in the comparison with SO2 measurements. 
Posterior CO concentrations are larger than the prior simulations, consistent with previous top-down estimates 
(Gaubert et al., 2020; Miyazaki et al., 2020), but are hard to evaluate due to the lack of a national monitoring 
system over the studied period.

Figure  3 shows the trend of top-down emissions from the sector-based inversions in January 2005–2012. In 
China, these top-down NOx emissions capture the trends from the species-based inversions in Qu, Henze, Theys, 
et al. (2019) before 2010. The changes in top-down NOx emissions are mainly driven by the industry, energy, 
and transportation sector, which increased by 8%, 7%, and 8% from 2005 to 2011, consistent with the sectoral 
emissions from the bottom-up estimates in Liu et al. (2016). SO2 emissions show the same peak in 2007 as the 
previous top-down estimates (Miyazaki et al., 2020; Qu, Henze, Li, et al., 2019; Qu, Henze, Theys, et al., 2019). 
Our estimates attribute this to the peak of emissions from the industry, energy, and residential sectors. The peak 
of SO2 energy emission is consistent with the bottom-up MEIC estimates (Geng et al., 2017), but the peaks of 
industry and residential SO2 emissions in 2007 are different from the continuous increase of the MEIC emissions. 
Since residential SO2 emissions peak in January and is 3–4 times larger than emissions in April-October based on 

Figure 3.  Top-down emissions in January 2005–2012 from the sector-based inversion. The red lines in the left and middle columns show species-based top-down 
estimates of all anthropogenic and natural emissions from Qu, Henze, Theys, et al. (2019). The blue lines in the right column show species-based top-down estimates of 
anthropogenic and biomass burning CO emissions from Jiang et al. (2017).
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bottom-up estimates (Zheng et al., 2021), the trends and driving sectors for January are likely different from those 
for the whole year. CO emissions peak in 2007, consistent with previous top-down estimates (Jiang et al., 2017; 
Zheng et al., 2019), but differ from the continuous increase until 2008–2012 in the bottom-up estimates (Elguindi 
et al., 2020). CO emissions from the industrial and residential sectors decrease by 23% and 20% from 2005 to 
2012, consistent with the reductions in annual bottom-up estimates in these two sectors in Zheng et al. (2018).

In India, the sector-based top-down emissions show consistent trends with the species-based top-down estimates 
from Qu, Henze, Theys, et al. (2019) and Jiang et al. (2017). Top-down emissions from the energy sector increase 
by 66% for NOx and 58% for SO2 and are the major driver of the increasing NOx and SO2 emissions in India. This 
is consistent with the 52% (NOx) and 92% (SO2) increases from 2005 to 2012 in the annual EDGARv5 bottom-up 
estimates (Crippa et al., 2020). Top-down CO emissions are driven by residential sources and fluctuate in India. 
However, bottom-up CO estimates from EDGARv5 show continuous increases in both the total and residential 
emissions.

4.  Discussion and Conclusions
We apply a new sector-based 4D-Var inversion to estimate NOx, SO2, and CO emissions over East Asia using 
satellite NO2, SO2, and CO observations. Emission adjustments from the sector-based inversion are generally 
consistent with the species-based estimates in both magnitude and spatial distribution. The sector-based posterior 
simulations show better fits to the surface NO2 and SO2 measurements, demonstrating the more accurate emission 
estimates when incorporating constraints from co-emissions. Top-down estimates show that the increase of NOx 
emissions until 2011 in China is driven by the industry, energy, and transportation sectors. Emissions from the 
industry, energy, and residential sector contribute to the peak of SO2 emissions in 2007. The trend of China's CO 
emissions is driven by the decrease in residential and industrial emissions. In India, the continuous increase of 
NOx and SO2 emissions from 2005 to 2012 are mainly due to increase in the energy sector, and the fluctuations of 
CO emissions are driven by the residential sector. The sectoral contributions and trends from the top-down esti-
mates are generally consistent with the bottom-up estimates except for CO emissions in India. Still, we recognize 
that sectors with large seasonal variations may show different emission adjustments and trends on an annual basis 
than the trends for January shown in this study.

We only perform the sector-based inversion for 1 month each year in this work due to the expensive computa-
tional cost (see details in Supporting Information S1). The trends of top-down emissions in January are generally 
consistent with previous yearly top-down estimates, but the sectoral breakdown may be different. Future devel-
opment of inverse modeling frameworks based on chemical transport models with massively parallel architecture 
(e.g., Eastham et al., 2018) can expand the sector-based top-down estimates to multiple months and years.

Our estimates of CO emissions have the largest discrepancies compared to other top-down and bottom-up esti-
mates. This is a well-known issue affected by model transport errors, uncertainties in OH fields, and different 
satellite retrievals (Arellano et al., 2004; Kopacz et al., 2010; Jiang et al., 2013, 2017; Müller et al., 2018; Yin 
et al., 2015; Zhang et al., 2019). In addition, the different biases and uncertainties of surface and column CO and 
the uncertainties assumed for prior emissions also affect top-down CO emission estimates. The lack of a mon-
itoring network over the studied region and period hinders the validation of CO estimates. Still, incorporation 
of CO observations provides additional constraints on the sectoral attribution of emissions and ensures that the 
inverse problem is well-posed. Improvement in the accuracy of satellite retrievals, incorporation of other primary 
pollutants in the assimilation, and more detailed characterizations of the uncertainties in the bottom-up emission 
inventories have the potential to improve the sector-based emission estimates.

Data Availability Statement
The OMI NO2 NASA product is downloaded from https://atrain.gesdisc.eosdis.nasa.gov/data/OMI/OMNO2_
CPR.003/ (last access 1 September 2021). OMI SO2 retrievals are from BIRA (http://sacs.aeronomie.be/products/
product-details.php#omi, last access 1 September 2021). The MOPITT CO data are downloaded from https://
search.earthdata.nasa.gov/search?q=mopitt (last access 1 September 2021). Surface measurements of NO2 and 
SO2 are obtained from CNEMC (http://www.cnemc.cn, only available in Chinese, last access 1 September 2021).

https://atrain.gesdisc.eosdis.nasa.gov/data/OMI/OMNO2_CPR.003/
https://atrain.gesdisc.eosdis.nasa.gov/data/OMI/OMNO2_CPR.003/
http://sacs.aeronomie.be/products/product-details.php#omi
http://sacs.aeronomie.be/products/product-details.php#omi
https://search.earthdata.nasa.gov/search?q=mopitt
https://search.earthdata.nasa.gov/search?q=mopitt
http://www.cnemc.cn
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