Show simple item record

dc.contributor.authorLejoly, S.
dc.contributor.authorPiccialli, A.
dc.contributor.authorMahieux, A.
dc.contributor.authorVandaele, A.C.,
dc.contributor.authorFrénay, B.
dc.date2024
dc.date.accessioned2024-09-13T13:11:13Z
dc.date.available2024-09-13T13:11:13Z
dc.identifier.isbn9782875870902
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/13440
dc.descriptionIn the field of spatial aeronomy, atmospheric profile datasets often contain partial data. Probabilistic models, particularly Gaussian processes (GPs), offer promising solutions for filling these data gaps. However, traditional GP algorithms encounter challenges when handling multiple sequences simultaneously, both in terms of performance and computational complexity. Recently, an algorithm named MAGMA was introduced to address these issues. This paper evaluates MAGMA’s performance using the SOIR Venus atmosphere dataset, marking the first application of MAGMA to atmospheric profiles. Results indicate that MAGMA represents a significant advancement towards the efficient application of GPs for extrapolating atmospheric profiles.
dc.languageeng
dc.titleExtrapolating Venusian Atmospheric Profiles using MAGMA Gaussian Processes
dc.typeConference
dc.subject.frascatiPhysical sciences
dc.audienceScientific
dc.source.titleESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium, 9-11 October 2024
dc.source.page155-160
Orfeo.peerreviewedNo
dc.identifier.url


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record