Show simple item record

dc.contributor.authorNadisic, Nicolas
dc.date2024
dc.date.accessioned2024-10-18T15:06:36Z
dc.date.available2024-10-18T15:06:36Z
dc.identifier.citationNicolas Nadisic, Yoann Arhant, Niels Vyncke, Sebastiaan Verplancke, Srdan Lazendic & Aleksandra Pizurica, “A deep active learning framework for crack detection in digital images of paintings”, Procedia Structural Integrity (2024), p.1-8en_US
dc.identifier.issn2452-3216
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/13481
dc.descriptionPreprint of Proceedings Paper.en_US
dc.description7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, SMAR 2024, Fisciano (SA), Italy, 2024-09-04/06.en_US
dc.languageengen_US
dc.titleA Deep Active Learning Framework for Crack Detection in Digital Images of Paintingsen_US
dc.typeBook chapteren_US
dc.subject.frascatiArtsen_US
dc.audienceScientificen_US
Orfeo.peerreviewedYesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record