Show simple item record

dc.contributor.authorMaggiolo, R.
dc.contributor.authorKistler, L.M.
dc.date2014
dc.date.accessioned2016-03-25T09:42:10Z
dc.date.available2016-03-25T09:42:10Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/2840
dc.descriptionWe study the spatial distribution of plasma sheet O+ and H+ ions using data from the COmposition and DIstribution Function (CODIF) instrument on board the Cluster spacecraft from 2001 to 2005. The densities are mapped along magnetic field lines to produce bidimensional density maps at the magnetospheric equatorial plane for various geomagnetic and solar activity levels (represented by the Kp and F10.7 indexes). We analyze the correlation of the O+ and H+ density with Kp and F10.7 in the midtail region at geocentric distances between 15 and 20 RE and in the near-Earth regions at radial distances between 7 and 8 RE. Near Earth the H+ density slightly increases with Kp and F10.7 while in the midtail region it is not correlated with Kp and F10.7. On the contrary, the amount of O+ ions significantly increases with Kp and F10.7 independently of the region. In the near-Earth region, the effects of solar EUV and geomagnetic activity on the O+ density are comparable. In the midtail region, the O+ density increases at a lower rate with solar EUV flux but strongly increases with geomagnetic activity although the effect is modulated by the solar EUV flux level. We also evidence a strong increase of the proportion of O+ ions with decreasing geocentric distance below ~10 RE. These results confirm the direct entry of O+ ions into the near-Earth plasma sheet and suggest that both energetic outflows from the auroral zone and cold outflow from the high-latitude ionosphere may contribute to feed the near-Earth plasma sheet with ionospheric ions.
dc.languageeng
dc.titleSpatial variation in the plasma sheet composition: Dependence on geomagnetic and solar activity
dc.typeArticle
dc.subject.frascatiPhysical sciences
dc.audienceScientific
dc.source.titleJournal of Geophysical Research: Space Physics
dc.source.volume119
dc.source.issue4
dc.source.page2836-2857
Orfeo.peerreviewedYes
dc.identifier.doi10.1002/2013JA019517
dc.identifier.scopus2-s2.0-84900824810


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record