Show simple item record

dc.contributor.authorLaj, P.
dc.contributor.authorKlausen, J.
dc.contributor.authorBilde, M.
dc.contributor.authorPlaß-Duelmer, C.
dc.contributor.authorPappalardo, G.
dc.contributor.authorClerbaux, C.
dc.contributor.authorBaltensperger, U.
dc.contributor.authorHjorth, J.
dc.contributor.authorSimpson, D.
dc.contributor.authorReimann, S.
dc.contributor.authorCoheur, P.-F.
dc.contributor.authorRichter, A.
dc.contributor.authorDe Mazière, M.
dc.contributor.authorRudich, Y.
dc.contributor.authorMcFiggans, G.
dc.contributor.authorTorseth, K.
dc.contributor.authorWiedensohler, A.
dc.contributor.authorMorin, S.
dc.contributor.authorSchulz, M.
dc.contributor.authorAllan, J.D.
dc.contributor.authorAttié, J.-L.
dc.contributor.authorBarnes, I.
dc.contributor.authorBirmili, W.
dc.contributor.authorCammas, J.P.
dc.contributor.authorDommen, J.
dc.contributor.authorDorn, H.-P.
dc.contributor.authorFowler, D.
dc.contributor.authorFuzzi, S.
dc.contributor.authorGlasius, M.
dc.contributor.authorGranier, C.
dc.contributor.authorHermann, M.
dc.contributor.authorIsaksen, I.S.A.
dc.contributor.authorKinne, S.
dc.contributor.authorKoren, I.
dc.contributor.authorMadonna, F.
dc.contributor.authorMaione, M.
dc.contributor.authorMassling, A.
dc.contributor.authorMoehler, O.
dc.contributor.authorMona, L.
dc.contributor.authorMonks, P.S.
dc.contributor.authorMüller, D.
dc.contributor.authorMüller, T.
dc.contributor.authorOrphal, J.
dc.contributor.authorPeuch, V.-H.
dc.contributor.authorStratmann, F.
dc.contributor.authorTanré, D.
dc.contributor.authorTyndall, G.
dc.contributor.authorAbo Riziq, A.
dc.contributor.authorVan Roozendael, M.
dc.contributor.authorVillani, P.
dc.contributor.authorWehner, B.
dc.contributor.authorWex, H.
dc.contributor.authorZardini, A.A.
dc.date2009
dc.date.accessioned2016-04-05T11:22:55Z
dc.date.available2016-04-05T11:22:55Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/3272
dc.descriptionScientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements. In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry. Emphasis is given to the most promising and innovative technologies that will become operational in the near future to improve knowledge of atmospheric composition. Our current observation capacity, however, is not satisfactory to understand and predict future atmospheric composition changes, in relation to predicted climate warming. Based on the limitation of the current European observing system, we address the major gaps in a second part of the paper to explain why further developments in current observation strategies are still needed to strengthen and optimise an observing system not only capable of responding to the requirements of atmospheric services but also to newly open scientific questions. © 2009 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.titleMeasuring atmospheric composition change
dc.typeArticle
dc.subject.frascatiEarth and related Environmental sciences
dc.audienceScientific
dc.subject.freeAnalytical techniques
dc.subject.freeAtmospheric changes
dc.subject.freeAtmospheric research
dc.subject.freeAtmospheric systems
dc.subject.freeClimate warming
dc.subject.freeComplex model
dc.subject.freeEarth observation satellites
dc.subject.freeFurther development
dc.subject.freeGround based
dc.subject.freeIn-situ
dc.subject.freeInformation concerning
dc.subject.freeInnovative technology
dc.subject.freeInstrumental tools
dc.subject.freeLaboratory techniques
dc.subject.freeObserving systems
dc.subject.freePassenger aircrafts
dc.subject.freeScientific advances
dc.subject.freeScientific findings
dc.subject.freeValidation of numerical model
dc.subject.freeAir quality
dc.subject.freeAircraft
dc.subject.freeAtmospheric chemistry
dc.subject.freeAtmospherics
dc.subject.freeClimatology
dc.subject.freeInstruments
dc.subject.freeRemote sensing
dc.subject.freeAtmospheric composition
dc.subject.freeammonia
dc.subject.freecarbon monoxide
dc.subject.freehydrogen peroxide
dc.subject.freehydroxyl radical
dc.subject.freemethane
dc.subject.freenitrate
dc.subject.freeozone
dc.subject.freeradioisotope
dc.subject.freereactive nitrogen species
dc.subject.freestable isotope
dc.subject.freesulfate
dc.subject.freesulfur dioxide
dc.subject.freevolatile organic compound
dc.subject.freeaccuracy assessment
dc.subject.freeaerosol
dc.subject.freeair quality
dc.subject.freeatmospheric chemistry
dc.subject.freechemical composition
dc.subject.freefuture prospect
dc.subject.freeground-based measurement
dc.subject.freein situ measurement
dc.subject.freeinnovation
dc.subject.freeinstrumentation
dc.subject.freelaboratory method
dc.subject.freemeasurement method
dc.subject.freenumerical model
dc.subject.freeobservational method
dc.subject.freeoptimization
dc.subject.freeprediction
dc.subject.freeremote sensing
dc.subject.freeresearch work
dc.subject.freewarming
dc.subject.freeair analysis
dc.subject.freeair pollution
dc.subject.freeair sampling
dc.subject.freeairborne particle
dc.subject.freeaircraft
dc.subject.freeatmospheric transport
dc.subject.freeclimate change
dc.subject.freecloud
dc.subject.freegreenhouse effect
dc.subject.freeinfrared spectroscopy
dc.subject.freelight scattering
dc.subject.freemass spectrometry
dc.subject.freenonhuman
dc.subject.freeonline analysis
dc.subject.freeparticle size
dc.subject.freeparticulate matter
dc.subject.freepollution monitoring
dc.subject.freeprecipitation
dc.subject.freeprediction
dc.subject.freepriority journal
dc.subject.freereview
dc.subject.freesecondary organic aerosol
dc.subject.freethermodynamics
dc.subject.freetroposphere
dc.subject.freewettability
dc.source.titleAtmospheric Environment
dc.source.volume43
dc.source.issue33
dc.source.page5351-5414
Orfeo.peerreviewedYes
dc.identifier.doi10.1016/j.atmosenv.2009.08.020
dc.identifier.scopus2-s2.0-70350060209


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record