Show simple item record

dc.contributor.authorEchim, M.M.
dc.contributor.authorRoth, M.
dc.contributor.authorDe Keyser, J.
dc.date2008
dc.date.accessioned2016-09-21T11:04:57Z
dc.date.available2016-09-21T11:04:57Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/4326
dc.descriptionWe discuss a model for the quasi-stationary coupling between magnetospheric sheared flows in the dusk sector and discrete auroral arcs, previously analyzed for the case of a uniform height-integrated Pedersen conductivity (Σ P). Here we introduce an ionospheric feedback as the variation of Σ P with the energy flux of precipitating magnetospheric electrons (ε em). One key-component of the model is the kinetic description of the interface between the duskward LLBL and the plasma sheet that gives the profile of Φ m, the magnetospheric electrostatic potential. The velocity shear in the dusk LLBL plays the role of a generator for the auroral circuit closing through Pedersen currents in the auroral ionosphere. The field-aligned current density, j
dc.description, and the energy flux of precipitating electrons are given by analytic functions of the field-aligned potential drop, ΔΦ, derived from standard kinetic models of the adiabatic motion of particles. The ionospheric electrostatic potential, Φ i (and implicitely ΔΦ) is determined from the current continuity equation in the ionosphere. We obtain values of ΔΦ of the order of kilovolt and of j
dc.descriptionof the order of tens of 1/4A/m 2 in thin regions of the order of several kilometers at 200 km altitude. The spatial scale is significantly smaller and the peak values of ΔΦ, j
dc.descriptionand ε em are higher than in the case of a uniform Σ P. Effects on the postnoon/evening auroral arc electrodynamics due to variations of dusk LLBL and solar wind dynamic and kinetic pressure are discussed. In thin regions (of the order of kilometer) embedding the maximum of ΔΦ we evidence a non-linear regime of the current-voltage relationship. The model predicts also that visible arcs form when the velocity shear in LLBL is above a threshold value depending on the generator and ionospheric plasma properties. Brighter arcs are obtained for increased velocity shear in the LLBL; their spatial scale remains virtually unmodified. The field-aligned potential drop tends to decrease with increasing LLBL density. For higher values of the LLBL electron temperature the model gives negative field-aligned potential drops in regions adjacent to upward field-aligned currents.
dc.languageeng
dc.titleIonospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs
dc.typeArticle
dc.subject.frascatiPhysical sciences
dc.audienceScientific
dc.subject.freeaurora
dc.subject.freeelectrodynamics
dc.subject.freeenergy flux
dc.subject.freeionosphere
dc.subject.freemagnetosphere
dc.source.titleAnnales Geophysicae
dc.source.volume26
dc.source.issue4
dc.source.page913-928
Orfeo.peerreviewedYes
dc.identifier.doi10.5194/angeo-26-913-2008
dc.identifier.scopus2-s2.0-43949143857


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record