Show simple item record

dc.contributor.authorShaaban, S.M.
dc.contributor.authorLazar, M.
dc.contributor.authorPoedts, S.
dc.contributor.authorElhanbaly, A.
dc.date2016
dc.date.accessioned2016-12-13T12:27:18Z
dc.date.available2016-12-13T12:27:18Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/4662
dc.descriptionThe kinetic properties of the solar wind protons (ions), like their temperature anisotropy and the resulting instabilities, are, in general, investigated considering only the proton core (or thermal) populations. The implication of the suprathermal halo components is minimized or just ignored, despite the fact that their presence in the solar wind is continuously reported by the observations, and their kinetic energy density may be significant. Whether they are originating in the corona or solar wind, the energetic particles may result from acceleration by the plasma turbulence or from the pitch angle scattering of the streaming protons by the self-generated fluctuations. The presence of suprathermal protons in the heliosphere suggests, therefore, a direct implication in resonant interactions, e.g., Landau and cyclotron, with plasma particles. This paper presents the results of a first investigation on the interplay of the proton core and suprathermal halo, when both these two populations may exhibit temperature anisotropies, which destabilize the electromagnetic ion (proton) cyclotron (EMIC) modes. These results clearly show that for conditions typically encountered in the solar wind, the effects of the suprathermals can be more important than those driven by the core. Remarkable are also the cumulative effects of the core and halo components, which change dramatically the instability conditions.
dc.languageeng
dc.titleThe interplay of the solar wind proton core and halo populations: EMIC instability
dc.typeArticle
dc.subject.frascatiPhysical sciences
dc.audienceScientific
dc.source.titleJournal of Geophysical Research A: Space Physics
dc.source.volume121
dc.source.issue7
dc.source.page6031-6047
Orfeo.peerreviewedYes
dc.identifier.doi10.1002/2016JA022587
dc.identifier.scopus2-s2.0-84983664709


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record