Show simple item record

dc.contributor.authorBingen, C.
dc.contributor.authorRobert, C.E.
dc.contributor.authorStebel, K.
dc.contributor.authorBrühl, C.
dc.contributor.authorSchallock, J.
dc.contributor.authorVanhellemont, F.
dc.contributor.authorMateshvili, N.
dc.contributor.authorHöpfner, M.
dc.contributor.authorTrickl, T.
dc.contributor.authorBarnes, J.E.
dc.contributor.authorJumelet, J.
dc.contributor.authorVernier, J.-P.
dc.contributor.authorPopp, T.
dc.contributor.authorde Leeuw, G.
dc.contributor.authorPinnock, S.
dc.date2017
dc.date.accessioned2017-12-22T14:32:04Z
dc.date.available2017-12-22T14:32:04Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/6353
dc.descriptionThis paper presents stratospheric aerosol climate records developed in the framework of the Aerosol_cci project, one of the 14 parallel projects from the ESA Climate Change Initiative. These data records were processed from a stratospheric aerosol dataset derived from the GOMOS experiment, using an inversion algorithm optimized for aerosol retrieval, called AerGOM. They provide a suite of aerosol parameters, such as the aerosol extinction coefficient at different wavelengths in the UV–visible range. The extinction record includes the total extinction as well as separate fields for liquid sulfate aerosols and polar stratospheric clouds (PSCs). Several additional fields (PSC flag, etc.) are also provided. The resulting stratospheric aerosol dataset, which spans the whole duration of the GOMOS mission (2002 − 2012), was validated using different reference datasets (lidar and balloon profiles). In the present paper, the emphasis is put on the extinction records. After a thorough analysis of the original AerGOM dataset, we describe the methodology used to construct the gridded CCI-GOMOS dataset and the resulting improvements on both the AerGOM algorithm and the binning procedure, in terms of spatio-temporal resolution, coverage and data quality. The extinction datasets were validated using lidar profiles from three ground-based stations (Mauna Loa, Garmisch-Partenkirchen, Dumont d'Urville). The median difference of the CCI-GOMOS (Level 3) extinction and ground-based lidar profiles is between ~ 15% and ~ 45% in the 16–21 km altitude range, depending on the considered site and aerosol type. The CCI-GOMOS dataset was subsequently used, together with a MIPAS SO2 time series, to update a volcanic eruption inventory published previously, thus providing a more comprehensive list of eruptions for the ENVISAT period (2002–2012). The number of quantified eruptions increases from 102 to 230 in the updated inventory. This new inventory was used to simulate the evolution of the global radiative forcing by application of the EMAC chemistry-climate model. Results of this simulation improve the agreement between modelled global radiative forcing of stratospheric aerosols at about 100 hPa compared to values estimated from observations. Medium eruptions like the ones of Soufriere Hills/Rabaul (2006), Sarychev (2009) and Nabro (2011) cause a forcing change from about − 0.1 W/m2 to − 0.2 W/m2.
dc.languageeng
dc.titleStratospheric aerosol data records for the climate change initiative: Development, validation and application to chemistry-climate modelling
dc.typeArticle
dc.subject.frascatiEarth and related Environmental sciences
dc.audienceScientific
dc.subject.freeAerosols
dc.subject.freeAtmospheric radiation
dc.subject.freeClimate models
dc.subject.freeLight extinction
dc.subject.freeOptical radar
dc.subject.freeVolcanoes
dc.subject.freeAerosol remote sensing
dc.subject.freeClimate data records
dc.subject.freeENVISAT
dc.subject.freeGOMOS
dc.subject.freeStratospheric aerosol extinction
dc.subject.freeVolcanic eruptions
dc.subject.freeClimate change
dc.subject.freeaerosol
dc.subject.freealgorithm
dc.subject.freeclimate change
dc.subject.freeclimate modeling
dc.subject.freecloud radiative forcing
dc.subject.freedata set
dc.subject.freeEnvisat
dc.subject.freeextinction coefficient
dc.subject.freeGOMOS
dc.subject.freelidar
dc.subject.freeMIPAS
dc.subject.freepolar stratospheric cloud
dc.subject.freeradiative forcing
dc.subject.freeremote sensing
dc.subject.freesatellite mission
dc.subject.freesimulation
dc.subject.freestratosphere
dc.subject.freevolcanic eruption
dc.subject.freeAntarctica
dc.subject.freeBasse Terre
dc.subject.freeDumont d'Urville
dc.subject.freeEast Antarctica
dc.subject.freeEthiopia
dc.subject.freeGuadeloupe
dc.subject.freeHawaii [(ISL) Hawaiian Islands]
dc.subject.freeHawaii [United States]
dc.subject.freeHawaiian Islands
dc.subject.freeLeeward Islands [Lesser Antilles]
dc.subject.freeMauna Loa
dc.subject.freeNabro
dc.subject.freeSoufriere
dc.source.titleRemote Sensing of Environment
dc.source.volume203
dc.source.page296-321
Orfeo.peerreviewedYes
dc.identifier.doi10.1016/j.rse.2017.06.002
dc.identifier.scopus2-s2.0-85022089612


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record