Show simple item record

dc.contributor.authorSimon Wedlund, C.
dc.contributor.authorBehar, E.
dc.contributor.authorKallio, E.
dc.contributor.authorNilsson, H.
dc.contributor.authorAlho, M.
dc.contributor.authorGunell, H.
dc.contributor.authorBodewits, D.
dc.contributor.authorBeth, A.
dc.contributor.authorGronoff, G.
dc.contributor.authorHoekstra, R.
dc.date2019
dc.date.accessioned2019-09-23T11:27:16Z
dc.date.available2019-09-23T11:27:16Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/7371
dc.descriptionContext. Solar wind charge-changing reactions are of paramount importance to the physico-chemistry of the atmosphere of a comet because they mass-load the solar wind through an effective conversion of fast, light solar wind ions into slow, heavy cometary ions. The ESA/Rosetta mission to comet 67P/Churyumov-Gerasimenko (67P) provided a unique opportunity to study charge-changing processes in situ. Aims. To understand the role of charge-changing reactions in the evolution of the solar wind plasma and to interpret the complex in situ measurements made by Rosetta, numerical or analytical models are necessary. Methods. An extended analytical formalism describing solar wind charge-changing processes at comets along solar wind streamlines is presented. It is based on a thorough book-keeping of available charge-changing cross sections of hydrogen and helium particles in a water gas. Results. After presenting a general 1D solution of charge exchange at comets, we study the theoretical dependence of charge-state distributions of (He2+, He+, He0) and (H+, H0, H−) on solar wind parameters at comet 67P. We show that double charge exchange for the He2+−H2O system plays an important role below a solar wind bulk speed of 200 km s−1, resulting in the production of He energetic neutral atoms, whereas stripping reactions can in general be neglected. Retrievals of outgassing rates and solar wind upstream fluxes from local Rosetta measurements deep in the coma are discussed. Solar wind ion temperature effects at 400 km s−1 solar wind speed are well contained during the Rosetta mission. Conclusions. As the comet approaches perihelion, the model predicts a sharp decrease of solar wind ion fluxes by almost one order of magnitude at the location of Rosetta, forming in effect a solar wind ion cavity. This study is the second part of a series of three on solar wind charge-exchange and ionization processes at comets, with a specific application to comet 67P and the Rosetta mission.
dc.languageeng
dc.titleSolar wind charge exchange in cometary atmospheres: II. Analytical model
dc.typeArticle
dc.subject.frascatiPhysical sciences
dc.audienceScientific
dc.subject.freecomets
dc.subject.free67P/Churyumov-Gerasimenko
dc.subject.freedetectors
dc.subject.freewaves
dc.subject.freesolar wind
dc.source.titleAstronomy & Astrophysics
dc.source.volume630
dc.source.pageA36
Orfeo.peerreviewedYes
dc.identifier.doi10.1051/0004-6361/201834874


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record