Show simple item record

dc.contributor.authorSkoulidou, I.
dc.contributor.authorKoukouli, M.-E.
dc.contributor.authorManders, A.
dc.contributor.authorSegers, A.
dc.contributor.authorKaragkiozidis, D.
dc.contributor.authorGratsea, M.
dc.contributor.authorBalis, D.
dc.contributor.authorBais, A.
dc.contributor.authorGerasopoulos, E.
dc.contributor.authorStavrakou, T.
dc.contributor.authorVan Geffen, J.
dc.contributor.authorEskes, H.
dc.contributor.authorRichter, A.
dc.date2021
dc.date.accessioned2021-05-04T12:19:21Z
dc.date.available2021-05-04T12:19:21Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/7752
dc.descriptionThe evaluation of chemical transport models, CTMs, is essential for the assessment of their performance regarding the physical and chemical parameterizations used. While regional CTMs have been widely used and evaluated over Europe, their validation over Greece is limited. In this study, we investigate the performance of the Long Term Ozone Simulation European Operational Smog (LOTOS-EUROS) v2.2.001 regional chemical transport model in simulating nitrogen dioxide, NO2, over Greece from June to December 2018. In situ NO2 measurements obtained from 14 stations of the National Air Pollution Monitoring Network are compared with surface simulations over the two major cities of Greece, Athens and Thessaloniki. Overall the LOTOS-EUROS NO2 surface simulations compare very well to the in situ measurements showing a mild underestimation of the measurements with a mean relative bias of ∼−10 %, a high spatial correlation coefficient of 0.86 and an average temporal correlation of 0.52. The CTM underestimates the NO2 surface concentrations during daytime by ∼−50 ± 15 %, while it slightly overestimates during night-time ∼ 10 ± 35 %. Furthermore, the LOTOS-EUROS tropospheric NO2 columns are evaluated against ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) NO2 measurements in Athens and Thessaloniki. We report that the CTM tropospheric NO2 column simulations over both urban and rural locations represent the diurnal patterns and hourly levels for both summer and winter seasons satisfactorily. The relative biases range between ∼ −2 % and −35 %, depending on season and relative NO2 load observed. Finally, the CTM was assessed also against space-borne Sentinel-5 Precursor (S5P) carrying the Tropospheric Monitoring Instrument (TROPOMI) tropospheric NO2 observations. We conclude that LOTOS-EUROS simulates extremely well the tropospheric NO2 patterns over the region with very high spatial correlation of 0.82 on average, ranging between 0.66 and 0.95, with negative biases in the summer and positive in the winter. Updated emissions for the simulations and model improvements when extreme values of boundary layer height are encountered are further suggested.
dc.languageeng
dc.titleEvaluation of the LOTOS-EUROS NO2 simulations using ground-based measurements and S5P/TROPOMI observations over Greece
dc.typeArticle
dc.subject.frascatiEarth and related Environmental sciences
dc.audienceScientific
dc.source.titleAtmospheric Chemistry and Physics
dc.source.volume21
dc.source.issue7
dc.source.page5269-5288
Orfeo.peerreviewedYes
dc.identifier.doi10.5194/acp-21-5269-2021


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record