Show simple item record

dc.contributor.authorWagner, A.
dc.contributor.authorBennouna, Y.
dc.contributor.authorBlechschmidt, A.-M.
dc.contributor.authorBrasseur, G.
dc.contributor.authorChabrillat, S.
dc.contributor.authorChristophe, Y.
dc.contributor.authorErrera, Q.
dc.contributor.authorEskes, H.
dc.contributor.authorFlemming, J.
dc.contributor.authorHansen, K.M.
dc.contributor.authorInness, A.
dc.contributor.authorKapsomenakis, J.
dc.contributor.authorLangerock, B.
dc.contributor.authorRichter, A.
dc.contributor.authorSudarchikova, N.
dc.contributor.authorThouret, V.
dc.contributor.authorZerefos, C.
dc.date2021
dc.date.accessioned2021-05-27T12:03:04Z
dc.date.available2021-05-27T12:03:04Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/7770
dc.descriptionThe Copernicus Atmosphere Monitoring Service (CAMS) is operationally providing forecast and reanalysis products of air quality and atmospheric composition. In this article, we present an extended evaluation of the CAMS global reanalysis data set of four reactive gases, namely, ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO), using multiple independent observations. Our results show that the CAMS model system mostly provides a stable and accurate representation of the global distribution of reactive gases over time. Our findings highlight the crucial impact of satellite data assimilation and emissions, investigated through comparison with a model run without assimilated data. Stratospheric and tropospheric O3 are mostly well constrained by the data assimilation, except over Antarctica after 2012/2013 due to changes in the assimilated data. Challenges remain for O3 in the Tropics and high-latitude regions during winter and spring. At the surface and for short-lived species (NO2), data assimilation is less effective. Total column CO in the CAMS reanalysis is well constrained by the assimilated satellite data. The control run, however, shows large overestimations of total column CO in the Southern Hemisphere and larger year-to-year variability in all regions. Concerning the long-term stability of the CAMS model, we note drifts in the time series of biases for surface O3 and CO in the Northern midlatitudes and Tropics and for NO2 over East Asia, which point to biased emissions. Compared to the previous Monitoring Atmospheric Composition and Climate reanalysis, changes in the CAMS chemistry module and assimilation system helped to reduce biases and enhance the long-term temporal consistency of model results for the CAMS reanalysis.
dc.languageeng
dc.titleComprehensive evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis against independent observations: Reactive gases
dc.typeArticle
dc.subject.frascatiEarth and related Environmental sciences
dc.audienceScientific
dc.subject.freeReanalysis
dc.subject.freeModel evaluation
dc.subject.freeChemical transport model
dc.subject.freeData assimilation
dc.subject.freeReactive gases
dc.source.titleElementa: Science of the Anthropocene
dc.source.volume9
dc.source.issue1
dc.source.pageA00171
Orfeo.peerreviewedYes
dc.identifier.doi10.1525/elementa.2020.00171


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record