Show simple item record

dc.contributor.authorZhou, M.
dc.contributor.authorLangerock, B.
dc.contributor.authorVigouroux, C.
dc.contributor.authorDils, B.
dc.contributor.authorHermans, C.
dc.contributor.authorKumps, N.
dc.contributor.authorMetzger, J.-M.
dc.contributor.authorMahieu, E.
dc.contributor.authorWang, P.
dc.contributor.authorDe Mazière, M.
dc.date2021
dc.date.accessioned2021-10-01T09:58:08Z
dc.date.available2021-10-01T09:58:08Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/7997
dc.descriptionNitric oxide (NO) is a key active trace gas in the atmosphere, which contributes to form harmful ozone in the troposphere and to the destruction of ozone in the stratosphere. In this study, we present the NO retrieval from ground-based Fourier-transform infrared (FTIR) solar absorption spectrometry measurements at a polluted site (Xianghe, China) and a background site (Maïdo, Reunion Island). The degree of freedom (DOF) of the NO retrieval is 2.3±0.4 (1σ) at Xianghe and 1.3±0.1 at Maïdo. By looking at the FTIR NO retrievals at Xianghe and Maïdo, we find that the stratospheric NO partial column is large in summer as compared to winter at both sites, and the seasonal variation in the FTIR stratospheric NO partial columns is consistent with that observed by the co-located Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite measurements. A large diurnal variation in the stratospheric NO partial column is observed by the FTIR measurements at Maïdo, with an increase from the early morning to about 14:00 local time and a decrease thereafter. Due to the low NO concentration near the surface, the FTIR NO retrieval is only sensitive to the stratosphere at Maïdo. The high NO mole fraction near the surface at Xianghe allows us to derive tropospheric and stratospheric NO partial columns separately, although the tropospheric column is very difficult to retrieve in summer (June–August) because of the high water vapor abundance. A good correlation is found between the NO observed by the FTIR measurements and other air pollutants (NO2 and CO) in the troposphere at Xianghe. It is the first study of a successful analysis of NO in the troposphere from a ground-based FTIR site. The tropospheric and stratospheric NO retrieval might be possible at other potential FTIR sites inside or near large cities with enhanced levels of NO near the surface.
dc.languageeng
dc.titleTropospheric and stratospheric NO retrieved from ground-based Fourier-transform infrared (FTIR) measurements
dc.typeArticle
dc.subject.frascatiEarth and related Environmental sciences
dc.audienceScientific
dc.source.titleAtmospheric Measurement Techniques
dc.source.volume14
dc.source.issue9
dc.source.page6233-6247
Orfeo.peerreviewedYes
dc.identifier.doi10.5194/amt-14-6233-2021


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record