Detecting Discontinuities From In Situ Space Measurements: Method and FPGA Implementation
View/ Open
Discipline
Physical sciences
Subject
magnetic field directional discontinuities
on-board monitoring and processing of data
FPGA-based design
high-level synthesis (HLS)
Audience
Scientific
Date
2022Metadata
Show full item recordDescription
The analysis in real time of space data variability is essential for scientists and space mission controllers. Automated tools designed to extract key descriptors of variability are needed and solutions to adapt such algorithms for on-board computers are rare. This paper describes the design of an automated system for detecting directional discontinuities of a physical quantity and its implementation in Field-Programmable Gate Array (FPGA). The system is currently adapted for solar wind or terrestrial magnetosheath magnetic field directional discontinuities, that is, sharp changes of the magnetic field directionality. Our detection algorithm uses analysis windows of adjustable width and averaging procedures in order to reduce the effects of random fluctuations. A sliding-window approach is designed for continuous monitoring and detection of magnetic directional discontinuities. A software implementation of the algorithm was tested using in-situ magnetic field measurements, and emphasized improvements of performance when using analysis windows of adjustable width. The FPGA implementation of the detection algorithm is built on DILIGENT Nexys 4 DDR featuring a commercial Xilinx Artix-7 device and is designed to be ported to space qualified infrastructure. The FPGA system was tested with synthetic and laboratory signals, and provides results in very good agreement with the software implementation. The FPGA system provides an efficient real-time monitoring solution using minimal computational and energy resources, and reducing the main on-board computer utilization.
Citation
Munteanu, C.; Turicu, D.C.; Creţ, O.; Echim, M. (2022). Detecting Discontinuities From In Situ Space Measurements: Method and FPGA Implementation. , Earth and Space Science, Vol. 9, Issue 10, e2022EA002537, DOI: 10.1029/2022EA002537.Identifiers
scopus:
Type
Article
Peer-Review
Yes
Language
eng