Simulating Radiative Heat Transfer in Multi-Scattering Irregular Surfaces: Application to Snow and Ice Morphologies on Europa
View/ Open
Authors
Carreon, A.
Macias, A.
Hsu, A.
Berisford, D.F.
Goldstein, D.B.
Varghese, P.
Trafton, L.
Hand, K.P.
Steckloff, J.
Mahieux, A.
Discipline
Physical sciences
Subject
Europa
radiative heat transfer
snow
Monte Carlo simulation
penitentes
Audience
Scientific
Date
2023Metadata
Show full item recordDescription
We developed a Monte-Carlo-based radiative heat transfer model capable of simulating solar exposure and subsequent warming of rough snow and ice surfaces on ice-covered airless solar system bodies. The model accounts for wavelength-dependent internal light scattering and heat conduction in the snow interior down to meter-scale depths. We validated the model against analytical and experimental test cases with relevant applications to Europa, one of Jupiter's moons. We examined differential heating across the surface, from the centimeter to meter scale, to reveal potential patterns of preferential sublimation that could lead to rough ice morphologies, such as penitentes. An exploration of parameters such as penitente height-width ratios, shape, size, snow grain size, and thermal properties revealed that taller, thinner, larger penitentes with sharper peaks, coarser snow grain sizes, and lower thermal inertias are more likely to grow in Europa's environment near the equator.
Citation
Carreon, A.; Macias, A.; Hsu, A.; Berisford, D.F.; Goldstein, D.B.; Varghese, P.; Trafton, L.; Hand, K.P.; Steckloff, J.; Mahieux, A. (2023). Simulating Radiative Heat Transfer in Multi-Scattering Irregular Surfaces: Application to Snow and Ice Morphologies on Europa. , Journal of Geophysical Research: Space Physics, Vol. 128, Issue 11, e2023JE007800, DOI: 10.1029/2023JE007800.Identifiers
url:
Type
Article
Peer-Review
Yes
Language
eng