• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Martian Atmospheric Aerosols Composition and Distribution Retrievals During the First Martian Year of NOMAD/TGO Solar Occultation Measurements: 2. Extended Results, End of MY 34 and First Half of MY 35

    Thumbnail
    View/Open
    Stolzenbach(2023a).pdf (9.165Mb)
    Authors
    Stolzenbach, A.
    López Valverde, M.-A.
    Brines, A.
    Modak, A.
    Funke, B.
    González-Galindo, F.
    Thomas, I.
    Liuzzi, G.
    Villanueva, G.
    Luginin, M.
    Aoki, S.
    Grabowski, U.
    Lopez Moreno, J.J.
    Rodrìguez Gòmez, J.
    Wolff, M.
    Ristic, B.
    Daerden, F.
    Bellucci, G.
    Patel, M.
    Vandaele, A.C.
    Show allShow less
    Discipline
    Physical sciences
    Subject
    Mars
    GDS
    aerosol
    Audience
    Scientific
    Date
    2023
    Metadata
    Show full item record
    Description
    This is the second part of Stolzenbach et al. (2023, https://doi.org/10.1029/2022JE007276), named hereafter Paper I, extends the period to the end of MY 34 and the first half of MY 35. This encompasses the end phase of the MY 34 Global Dust Storm (GDS), the MY 34 C-Storm, the Aphelion Cloud Belt (ACB) season of MY 35, and an unusual early dust event of MY 35 from LS 30° to LS 55°. The end of MY 34 overall aerosol size distribution shows the same parameters for dust and water ice to what was seen during the MY 34 GDS. Interestingly, the layered water ice vertical structure of MY 34 GDS disappears. The MY 34 C-Storm maintains condition like the MY 34 GDS. A high latitude layer of bigger water ice particles, close to 1 ?m, is seen from 50 to 60 km. This layered structure is linked to an enhanced meridional transport characteristic of high intensity dust event which put the MY 34 C-Storm as particularly intense compared to non-GDS years C-Storms as previously suggested by Holmes et al. (2021, https://doi.org/10.1016/j.epsl.2021.117109). Surprisingly, MY 35 began with an unusually large dust event (Kass et al., 2020, https://ui.adsabs.harvard.edu/abs/2020AGUFMP039?01K) found in the Northern hemisphere during LS 35° to LS 50°. During this dust event, the altitude of aerosol first detection is roughly equal to 20 km. This is close to the values encountered during the MY 34 GDS, its decay phase and the C-Storm of the same year. Nonetheless, no vertical layered structure was observed.
    Citation
    Stolzenbach, A.; López Valverde, M.-A.; Brines, A.; Modak, A.; Funke, B.; González-Galindo, F.; Thomas, I.; Liuzzi, G.; Villanueva, G.; Luginin, M.; Aoki, S.; Grabowski, U.; Lopez Moreno, J.J.; Rodrìguez Gòmez, J.; Wolff, M.; Ristic, B.; Daerden, F.; Bellucci, G.; Patel, M.; Vandaele, A.C. (2023). Martian Atmospheric Aerosols Composition and Distribution Retrievals During the First Martian Year of NOMAD/TGO Solar Occultation Measurements: 2. Extended Results, End of MY 34 and First Half of MY 35. , Journal of Geophysical Research: Planets, Vol. 128, Issue 11, e2023JE007835, DOI: 10.1029/2023JE007835.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/11186
    doi: http://dx.doi.org/10.1029/2023JE007835
    url:
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV