• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Atmospheric Influence on Cosmic-Ray-Induced Ionization and Absorbed Dose Rates

    Thumbnail
    View/Open
    Winant(2023b).pdf (13.24Mb)
    Authors
    Winant, A.
    Pierrard, V.
    Botek, E.
    Herbst K.
    Show allShow less
    Discipline
    Physical sciences
    Subject
    ionization
    absorbed dose
    galactic cosmic rays
    atmosphere
    Audience
    Scientific
    Date
    2023
    Metadata
    Show full item record
    Description
    When high-energy particles originating from space penetrate the atmosphere, they may interact with atoms and molecules, initiating air showers composed of secondary and tertiary particles propagating towards the ground. They can cause ionization of the atmosphere and contribute to the radiation dose at low altitudes. This work uses the GEANT-4-based Atmospheric Radiation Interaction Simulator (AtRIS) toolkit to compute these quantities in the Earth’s atmosphere. We take advantage of the unique Planet Specification File (PSF) of the Atmospheric Radiation Interaction Simulator (AtRIS) to investigate the effect of the state of the atmosphere on the resulting induced ionization and absorbed dose rates from the top of the atmosphere (at 100 km) down to the surface. The atmospheric profiles (density, pressure, temperature, and composition) are computed with the NRLMSISE-00 model at various latitudes and for every month of 2014, corresponding to the last maximum of solar activity. The resulting ionization and dose rates present different profiles that vary with latitude in the atmosphere, with the relative difference between equatorial and high latitude ionization rates reaching 68% in the Pfotzer maximum. We obtain differences of up to 59% between the equator and high latitudes observed at commercial flight altitudes for the radiation dose. Both ionization and absorbed dose rates also feature anti-phased seasonal variations in the two hemispheres throughout 2014. Based on these results, we computed global maps of the ionization and dose rates at fixed altitudes in the atmosphere by using precomputed maps of the effective vertical cutoff rigidities and the results of three AtRIS simulations to consider the effect of latitude. While sharing the same general structure as maps created with a single profile, these new maps also show a clear asymmetry in the ionization and absorbed dose rates in the polar regions.
    Citation
    Winant, A.; Pierrard, V.; Botek, E.; Herbst K. (2023). The Atmospheric Influence on Cosmic-Ray-Induced Ionization and Absorbed Dose Rates. , Universe, Vol. 9, Issue 12, A502, DOI: 10.3390/universe9120502.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/11200
    doi: http://dx.doi.org/10.3390/universe9120502
    url:
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV