• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of the long-range transport of the volcanic plume from the 2021 Tajogaite/Cumbre Vieja eruption to Europe using TROPOMI and ground-based measurements

    View/Open
    Heldelt(2025a).pdf (4.200Mb)
    Authors
    Hedelt, P.
    Reichardt, J.
    Lauermann, F.
    Weiß, B.
    Theys, N.
    Redondas, A.
    Barreto, A.
    Garcia, O.
    Loyola, D.
    Show allShow less
    Discipline
    Earth and related Environmental sciences
    Audience
    Scientific
    Date
    2025
    Metadata
    Show full item record
    Description
    The eruptions of the Tajogaite volcano on the western flank of the Cumbre Vieja ridge on the island of La Palma between September and December 2021 released large amounts of ash and SO2. Transport and dispersion of the volcanic emissions were monitored by ground-based stations and satellite instruments alike. In particular, the spectrometric fluorescence and Raman lidar for atmospheric moisture sensing (RAMSES) at the Lindenberg Meteorological Observatory measured the plume of the strongest Tajogaite eruption of 22–23 September 2021 over northeastern Germany 4 d later. This study provides an analysis of SO2 vertical column density (VCD) and layer height (LH) measurements of the volcanic plume obtained with Sentinel-5 Precursor/TROPOspheric Monitoring Instrument (TROPOMI), which are compared to the observations at several stations across the Canary Islands. Furthermore, a new modeling approach based on TROPOMI SO2 VCD measurements and the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) was developed, which confirmed the link between Tajogaite eruptions and Lindenberg measurements. Modeled mean emission height at the volcanic vent is in excellent agreement with co-located TROPOMI SO2 LH and local lidar ash-height measurements. Finally, a comprehensive discussion of the RAMSES measurements is presented. A new retrieval approach has been developed to estimate the microphysical properties of the volcanic aerosol. For the first time, an optical particle model is utilized that assumes an irregular, non-spheroidal shape of the aerosol particles. According to the analysis, the volcanic aerosol consisted solely of fine-mode inorganic, solid, and irregularly shaped particles – the presence of large aerosol particles or wildfire aerosols could be excluded. The particles likely had an isometric to slightly plate-like shape with an effective half of the particle maximum dimension around 0.1 µm and a refractive index of about 1.51. Moreover, mass column values between 70 and 110 mg m−2, mean mass concentrations of 45–70 µg m−3, and mean mass conversion factors between 0.21 and 0.33 g m−2 at 355 nm were retrieved. Possibly RAMSES observed, at least in part, volcanic secondary sulfate aerosol, which was produced by gas-phase homogeneous reactions during the transport of the air masses from La Palma to Lindenberg.
    Citation
    Hedelt, P.; Reichardt, J.; Lauermann, F.; Weiß, B.; Theys, N.; Redondas, A.; Barreto, A.; Garcia, O.; Loyola, D. (2025). Analysis of the long-range transport of the volcanic plume from the 2021 Tajogaite/Cumbre Vieja eruption to Europe using TROPOMI and ground-based measurements. , Atmospheric Chemistry and Physics, Vol. 25, Issue 2, 1253-1272, DOI: 10.5194/acp-25-1253-2025.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/13567
    doi: http://dx.doi.org/10.5194/acp-25-1253-2025
    url:
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV