• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model

    Thumbnail
    View/Open
    Skachko(2014).pdf (2.234Mb)
    Authors
    Skachko, S.
    Errera, Q.
    Ménard, R.
    Christophe, Y.
    Chabrillat, S.
    Show allShow less
    Discipline
    Physical sciences
    Audience
    Scientific
    Date
    2014
    Metadata
    Show full item record
    Description
    An ensemble Kalman filter (EnKF) assimilation method is applied to the tracer transport using the same stratospheric transport model as in the four-dimensional variational (4D-Var) assimilation system BASCOE (Belgian Assimilation System for Chemical ObsErvations). This EnKF version of BASCOE was built primarily to avoid the large costs associated with the maintenance of an adjoint model. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ2 test measuring the misfit between the control variable and the observations. The performance of the EnKF and 4D-Var versions was estimated through the assimilation of Aura-MLS (microwave limb sounder) ozone observations during an 8-month period which includes the formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite the fundamental differences between the two assimilation methods, both systems use identical and carefully calibrated input error statistics. We provide the detailed procedure for these calibrations, and compare the two sets of analyses with a focus on the lower and middle stratosphere where the ozone lifetime is much larger than the observational update frequency. Based on the observation-minus-forecast statistics, we show that the analyses provided by the two systems are markedly similar, with biases less than 5% and standard deviation errors less than 10% in most of the stratosphere. Since the biases are markedly similar, they most probably have the same causes: these can be deficiencies in the model and in the observation data set, but not in the assimilation algorithm nor in the error calibration. The remarkably similar performance also shows that in the context of stratospheric transport, the choice of the assimilation method can be based on application-dependent factors, such as CPU cost or the ability to generate an ensemble of forecasts.
    Citation
    Skachko, S.; Errera, Q.; Ménard, R.; Christophe, Y.; Chabrillat, S. (2014). Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model. , Geoscientific Model Development, Vol. 7, Issue 4, 1451-1465, DOI: 10.5194/gmd-7-1451-2014.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/2855
    doi: http://dx.doi.org/10.5194/gmd-7-1451-2014
    scopus: 2-s2.0-84904293748
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV