Show simple item record

dc.contributor.authorDentener, F.
dc.contributor.authorStevenson, D.
dc.contributor.authorEllingsen, K.
dc.contributor.authorVan Noije, T.
dc.contributor.authorSchultz, M.
dc.contributor.authorAmann, M.
dc.contributor.authorAtherton, C.
dc.contributor.authorBell, N.
dc.contributor.authorBergmann, D.
dc.contributor.authorBey, I.
dc.contributor.authorBouwman, L.
dc.contributor.authorButler, T.
dc.contributor.authorCofala, J.
dc.contributor.authorCollins, B.
dc.contributor.authorDrevet, J.
dc.contributor.authorDoherty, R.
dc.contributor.authorEickhout, B.
dc.contributor.authorEskes, H.
dc.contributor.authorFiore, A.
dc.contributor.authorGauss, M.
dc.contributor.authorHauglustaine, D.
dc.contributor.authorHorowitz, L.
dc.contributor.authorIsaksen, I.S.A.
dc.contributor.authorJosse, B.
dc.contributor.authorLawrence, M.
dc.contributor.authorKrol, M.
dc.contributor.authorLamarque, J.F.
dc.contributor.authorMontanaro, V.
dc.contributor.authorMüller, J.F.
dc.contributor.authorPeuch, V.H.
dc.contributor.authorPitari, G.
dc.contributor.authorPyle, J.
dc.contributor.authorRast, S.
dc.contributor.authorRodriguez, J.
dc.contributor.authorSanderson, M.
dc.contributor.authorSavage, N.H.
dc.contributor.authorShindell, D.
dc.contributor.authorStrahan, S.
dc.contributor.authorSzopa, S.
dc.contributor.authorSudo, K.
dc.contributor.authorVan Dingenen, R.
dc.contributor.authorWild, O.
dc.contributor.authorZeng, G.
dc.date2006
dc.date.accessioned2016-11-21T14:18:46Z
dc.date.available2016-11-21T14:18:46Z
dc.identifier.urihttps://orfeo.belnet.be/handle/internal/4489
dc.descriptionAir quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, while the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models and show a reasonable agreement with surface ozone, wet deposition, and NO 2 satellite observations. Large parts of the world are currently exposed to high ozone concentrations and high deposition of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 ± 1.2 ppb (CLE) and 4.3 ± 2.2 ppb (A2), using the ensemble mean model results and associated ±1 σ standard deviations. Only the progressive MFR scenario will reduce ozone, by -2.3 ± 1.1 ppb. Climate change is expected to modify surface ozone by -0.8 ± 0.6 ppb, with larger decreases over sea than over land. Radiative forcing by ozone increases by 63 ± 15 and 155 ± 37 mW m-2 for CLE and A2, respectively, and decreases by -45 ± 15 mW m-2 for MFR. We compute that at present 10.1% of the global natural terrestrial ecosystems are exposed to nitrogen deposition above a critical load of 1 g N m-2 yr-1. These percentages increase by 2030 to 15.8% (CLE), 10.5% (MFR), and 25% (A2). This study shows the importance of enforcing current worldwide air quality legislation and the major benefits of going further. Nonattainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.
dc.languageeng
dc.titleThe global atmospheric environment for the next generation
dc.typeArticle
dc.subject.frascatiEarth and related Environmental sciences
dc.audienceScientific
dc.subject.freeAir quality legislation
dc.subject.freeAir quality policy objectives
dc.subject.freeEnsemble mean model
dc.subject.freeWet depositions
dc.subject.freeAir quality
dc.subject.freeEcosystems
dc.subject.freeEnvironmental impact
dc.subject.freeGlobal warming
dc.subject.freeIndustrial emissions
dc.subject.freeMathematical models
dc.subject.freeNitrogen
dc.subject.freeOzone
dc.subject.freeAtmospheric chemistry
dc.subject.freemethane
dc.subject.freenitrogen
dc.subject.freeozone
dc.subject.freeAir quality
dc.subject.freeAtmospheric chemistry
dc.subject.freeEcosystems
dc.subject.freeEnvironmental impact
dc.subject.freeGlobal warming
dc.subject.freeIndustrial emissions
dc.subject.freeMathematical models
dc.subject.freeNitrogen
dc.subject.freeOzone
dc.subject.freeair quality
dc.subject.freeatmospheric pollution
dc.subject.freeclimate change
dc.subject.freeenvironmental legislation
dc.subject.freeenvironmental modeling
dc.subject.freeglobal change
dc.subject.freenitric oxide
dc.subject.freeozone
dc.subject.freepollution exposure
dc.subject.freewet deposition
dc.subject.freeAfrica
dc.subject.freeair quality
dc.subject.freearticle
dc.subject.freeatmospheric transport
dc.subject.freeclimate change
dc.subject.freeecosystem
dc.subject.freeEurope
dc.subject.freeeutrophication
dc.subject.freeexhaust gas
dc.subject.freeindustrialization
dc.subject.freelaw
dc.subject.freemathematical model
dc.subject.freenitrogen deposition
dc.subject.freephotooxidation
dc.subject.freeSouth America
dc.subject.freeSouth Asia
dc.subject.freeSoutheast Asia
dc.subject.freetroposphere
dc.subject.freeUnited States
dc.subject.freewater vapor
dc.subject.freeworld health organization
dc.subject.freeAir Pollutants
dc.subject.freeAir Pollution
dc.subject.freeAnimals
dc.subject.freeAtmosphere
dc.subject.freeEcology
dc.subject.freeEcosystem
dc.subject.freeEnvironmental Monitoring
dc.subject.freeForecasting
dc.subject.freeGreenhouse Effect
dc.subject.freeHumans
dc.subject.freeNitrogen
dc.subject.freeOzone
dc.source.titleEnvironmental Science and Technology
dc.source.volume40
dc.source.issue11
dc.source.page3586-3594
Orfeo.peerreviewedYes
dc.identifier.doi10.1021/es0523845
dc.identifier.scopus2-s2.0-33646363667


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record