Ion acoustic waves at comet 67P/Churyumov-Gerasimenko: Observations and computations
View/ Open
Authors
Gunell, H.
Nilsson, H.
Hamrin, M.
Eriksson, A.
Odelstad, E.
Maggiolo, R.
Henri, P.
Vallieres, X.
Altwegg, K.
Tzou, C.-Y.
Rubin, M.
Glassmeier, K.-H.
Stenberg Wieser, G.
Simon Wedlund, C.
De Keyser, J.
Dhooghe, F.
Cessateur, G.
Gibbons, A.
Discipline
Physical sciences
Subject
Acoustic impedance
Dispersion (waves)
Dispersions
Distribution functions
Electric fields
Ion acoustic waves
Ions
Orbits
Particle spectrometers
Plasma (human)
Plasma density
Plasma waves
Probes
Quantum theory
Waves
67p/churyumov-gerasimenko
Comets: general
Comets: individual: 67P/Churyumov-Gerasimenko
Dispersion relations
Heliocentric distances
Instrumentation: detectors
Methods:analytical
Mutual impedance probes
Acoustic waves
Audience
Scientific
Date
2017Metadata
Show full item recordDescription
Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment. Aims. Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS). Methods. We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density. Results. We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H2O+. The bulk of the ion distribution is cold, kBTi = 0.01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves. Conclusions. In conclusion, we show that ion acoustic waves appear in the H2O+ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties.
Citation
Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Odelstad, E.; Maggiolo, R.; Henri, P.; Vallieres, X.; Altwegg, K.; Tzou, C.-Y.; Rubin, M.; Glassmeier, K.-H.; Stenberg Wieser, G.; Simon Wedlund, C.; De Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A. (2017). Ion acoustic waves at comet 67P/Churyumov-Gerasimenko: Observations and computations. , Astronomy and Astrophysics, Vol. 600, A3, DOI: 10.1051/0004-6361/201629801.Identifiers
scopus: 2-s2.0-85015776596
Type
Article
Peer-Review
Yes
Language
eng