• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget

    Thumbnail
    View/Open
    Wang(2017a).pdf (4.390Mb)
    Authors
    Wang, Y.
    Beirle, S.
    Hendrick, F.
    Hilboll, A.
    Jin, J.
    Kyuberis, A.A.
    Lampel, J.
    Li, A.
    Luo, Y.
    Lodi, L.
    Ma, J.
    Navarro, M.
    Ortega, I.
    Peters, E.
    Polyansky, O.L.
    Remmers, J.
    Richter, A.
    Puentedura, O.
    Van Roozendael, M.
    Seyler, A.
    Tennyson, J.
    Volkamer, R.
    Xie, P.
    Zobov, N.F.
    Wagner, T.
    Show allShow less
    Discipline
    Physical sciences
    Subject
    absorption
    atmospheric modeling
    error analysis
    sensitivity analysis
    spectral analysis
    uncertainty analysis
    water vapor
    Audience
    Scientific
    Date
    2017
    Metadata
    Show full item record
    Description
    In order to promote the development of the passive DOAS technique the Multi Axis DOAS – Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs) of nitrous acid (HONO) derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD) of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3  ×  1015 molecules cm−2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7  ×  1015 molecules cm−2. Although the HONO delta SCDs are normally smaller than 6  ×  1015 molecules cm−2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS) and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63  ×  1015 molecules cm−2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3  ×  1015 molecules cm−2, which is about half of the systematic difference between the real measurements. The differences of HONO delta SCDs retrieved in the selected three spectral ranges 335–361, 335–373 and 335–390 nm are considerable (up to 0.57  ×  1015 molecules cm−2) for both real measurements and synthetic spectra. We performed sensitivity studies to quantify the dominant systematic error sources and to find a recommended DOAS setting in the three spectral ranges. The results show that water vapour absorption, temperature and wavelength dependence of O4 absorption, temperature dependence of Ring spectrum, and polynomial and intensity offset correction all together dominate the systematic errors. We recommend a fit range of 335–373 nm for HONO retrievals. In such fit range the overall systematic uncertainty is about 0.87  ×  1015 molecules cm−2, much smaller than those in the other two ranges. The typical random uncertainty is estimated to be about 0.16  ×  1015 molecules cm−2, which is only 25 % of the total systematic uncertainty for most of the instruments in the MAD-CAT campaign. In summary for most of the MAX-DOAS instruments for elevation angle below 5°, half daytime measurements (usually in the morning) of HONO delta SCD can be over the detection limit of 0.2  ×  1015 molecules cm−2 with an uncertainty of  ∼  0.9  ×  1015 molecules cm−2.
    Citation
    Wang, Y.; Beirle, S.; Hendrick, F.; Hilboll, A.; Jin, J.; Kyuberis, A.A.; Lampel, J.; Li, A.; Luo, Y.; Lodi, L.; Ma, J.; Navarro, M.; Ortega, I.; Peters, E.; Polyansky, O.L.; Remmers, J.; Richter, A.; Puentedura, O.; Van Roozendael, M.; Seyler, A.; Tennyson, J.; Volkamer, R.; Xie, P.; Zobov, N.F.; Wagner, T. (2017). MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget. , Atmospheric Measurement Techniques, Vol. 10, Issue 10, 3719-3742, DOI: 10.5194/amt-10-3719-2017.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/6317
    doi: http://dx.doi.org/10.5194/amt-10-3719-2017
    scopus: 2-s2.0-85015150031
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV