• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two solar proton fluence models based on ground level enhancement observations

    Thumbnail
    View/Open
    Raukunen(2018a).pdf (1.005Mb)
    Authors
    Raukunen, O.
    Vainio, R.
    Tylka, A.J.
    Dietrich, W.F.
    Jiggens, P.
    Heynderickx, D.
    Dierckxsens, M.
    Crosby, N.
    Ganse, U.
    Siipola, R.
    Show allShow less
    Discipline
    Physical sciences
    Audience
    Scientific
    Date
    2018
    Metadata
    Show full item record
    Description
    Solar energetic particles (SEPs) constitute an important component of the radiation environment in interplanetary space. Accurate modeling of SEP events is crucial for the mitigation of radiation hazards in spacecraft design. In this study we present two new statistical models of high energy solar proton fluences based on ground level enhancement (GLE) observations during solar cycles 19-24. As the basis of our modeling, we utilize a four parameter double power law function (known as the Band function) fits to integral GLE fluence spectra in rigidity. In the first model, the integral and differential fluences for protons with energies between 10 MeV and 1 GeV are calculated using the fits, and the distributions of the fluences at certain energies are modeled with an exponentially cut-off power law function. In the second model, we use a more advanced methodology: by investigating the distributions and relationships of the spectral fit parameters we find that they can be modeled as two independent and two dependent variables. Therefore, instead of modeling the fluences separately at different energies, we can model the shape of the fluence spectrum. We present examples of modeling results and show that the two methodologies agree well except for a short mission duration (1 year) at low confidence level. We also show that there is a reasonable agreement between our models and three well-known solar proton models (JPL, ESP and SEPEM), despite the differences in both the modeling methodologies and the data used to construct the models.
    Citation
    Raukunen, O.; Vainio, R.; Tylka, A.J.; Dietrich, W.F.; Jiggens, P.; Heynderickx, D.; Dierckxsens, M.; Crosby, N.; Ganse, U.; Siipola, R. (2018). Two solar proton fluence models based on ground level enhancement observations. , Journal of Space Weather and Space Climate, Vol. 8, A04, DOI: 10.1051/swsc/2017031.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/6661
    doi: http://dx.doi.org/10.1051/swsc/2017031
    scopus: 2-s2.0-85041375830
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV