• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Description of a formaldehyde retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS)

    Thumbnail
    View/Open
    Kwon(2019a).pdf (6.158Mb)
    Authors
    Kwon, H.-A.
    Park, R.J.
    González Abad, G.
    Chance, K.
    Kurosu, T.P.
    Kim, J.
    De Smedt, I.
    Van Roozendael, M.
    Peters, E.
    Burrows, J.
    Show allShow less
    Discipline
    Physical sciences
    Audience
    Scientific
    Date
    2019
    Metadata
    Show full item record
    Description
    We describe a formaldehyde (HCHO) retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS) that will be launched by the Korean Ministry of Environment in 2019. The algorithm comprises three steps: preprocesses, radiance fitting, and postprocesses. The preprocesses include a wavelength calibration, as well as interpolation and convolution of absorption cross sections; radiance fitting is conducted using a nonlinear fitting method referred to as basic optical absorption spectroscopy (BOAS); and postprocesses include air mass factor calculations and bias corrections. In this study, several sensitivity tests are conducted to examine the retrieval uncertainties using the GEMS HCHO algorithm. We evaluate the algorithm with the Ozone Monitoring Instrument (OMI) Level 1B irradiance/radiance data by comparing our retrieved HCHO column densities with OMI HCHO products of the Smithsonian Astrophysical Observatory (OMHCHO) and of the Quality Assurance for Essential Climate Variables project (OMI QA4ECV). Results show that OMI HCHO slant columns retrieved using the GEMS algorithm are in good agreement with OMHCHO, with correlation coefficients of 0.77–0.91 and regression slopes of 0.94–1.04 for March, June, September, and December 2005. Spatial distributions of HCHO slant columns from the GEMS algorithm are consistent with the OMI QA4ECV products, but relatively poorer correlation coefficients of 0.52–0.76 are found compared to those against the OMHCHO products. Also, we compare the satellite results with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations. OMI GEMS HCHO vertical columns are 9 %–25 % lower than those of MAX-DOAS at Haute-Provence Observatory (OHP) in France, Bremen in Germany, and Xianghe in China. We find that the OMI GEMS retrievals have less bias than the OMHCHO and OMI QA4ECV products at OHP and Bremen in comparison with MAX-DOAS.
    Citation
    Kwon, H.-A.; Park, R.J.; González Abad, G.; Chance, K.; Kurosu, T.P.; Kim, J.; De Smedt, I.; Van Roozendael, M.; Peters, E.; Burrows, J. (2019). Description of a formaldehyde retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS). , Atmospheric Measurement Techniques, Vol. 12, Issue 7, 3551-3571, DOI: 10.5194/amt-12-3551-2019.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/7300
    doi: http://dx.doi.org/10.5194/amt-12-3551-2019
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV