• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SO₂ Emission Estimates Using OMI SO₂ Retrievals for 2005‐2017

    Thumbnail
    View/Open
    Qu(2019b).pdf (18.47Mb)
    Authors
    Qu, Z.
    Henze, D.K.
    Li, C.
    Theys, N.
    Wang, Y.
    Wang, J.
    Wang, W.
    Han, J.
    Shim, C.
    Dickerson, R.R.
    Ren, X.
    Show allShow less
    Discipline
    Earth and related Environmental sciences
    Audience
    Scientific
    Date
    2019
    Metadata
    Show full item record
    Description
    SO2 column densities from Ozone Monitoring Instrument provide important information on emission trends and missing sources, but there are discrepancies between different retrieval products. We employ three Ozone Monitoring Instrument SO2 retrieval products (National Aeronautics and Space Administration (NASA) standard (SP), NASA prototype, and BIRA) to study the magnitude and trend of SO2 emissions. SO2 column densities from these retrievals are most consistent when viewing angles and solar zenith angles are small, suggesting more robust emission estimates in summer and at low latitudes. We then apply a hybrid 4D‐Var/mass balance emission inversion to derive monthly SO2 emissions from the NASA SP and BIRA products. Compared to HTAPv2 emissions in 2010, both posterior emission estimates are lower in United States, India, and Southeast China, but show different changes of emissions in North China Plain. The discrepancies between monthly NASA and BIRA posterior emissions in 2010 are less than or equal to 17% in China and 34% in India. SO2 emissions increase from 2005 to 2016 by 35% (NASA)–48% (BIRA) in India, but decrease in China by 23% (NASA)–33% (BIRA) since 2008. Compared to in situ measurements, the posterior GEOS‐Chem surface SO2 concentrations have reduced NMB in China, the United States, and India but not in South Korea in 2010. BIRA posteriors have better consistency with the annual growth rate of surface SO2 measurement in China and spatial variability of SO2 concentration in China, South Korea, and India, whereas NASA SP posteriors have better seasonality. These evaluations demonstrate the capability to recover SO2 emissions using Ozone Monitoring Instrument observations.
    Citation
    Qu, Z.; Henze, D.K.; Li, C.; Theys, N.; Wang, Y.; Wang, J.; Wang, W.; Han, J.; Shim, C.; Dickerson, R.R.; Ren, X. (2019). SO₂ Emission Estimates Using OMI SO₂ Retrievals for 2005‐2017. , Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 4, 8336-8359, DOI: 10.1029/2019JD030243.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/7342
    doi: http://dx.doi.org/10.1029/2019JD030243
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV