• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals

    Thumbnail
    View/Open
    Torres(2019a).pdf (3.081Mb)
    Authors
    Torres, A.D.
    Keppel‐Aleks, G.
    Doney, S.C.
    Fendrock, M.
    Luis, K.
    De Mazière, M.
    Hase, F.
    Petri, C.
    Pollard, D.F.
    Roehl, C.M.
    Sussmann, R.
    Velazco, V.A.
    Warneke, T.
    Wunch, D.
    Show allShow less
    Discipline
    Earth and related Environmental sciences
    Subject
    atmospheric transport
    greenhouse gases
    CO2
    mesoscale
    OCO‐2
    TCCON
    Audience
    Scientific
    Date
    2019
    Metadata
    Show full item record
    Description
    National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 (OCO‐2) satellite provides observations of total column‐averaged CO2 mole fractions ( urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0001) at high spatial resolution that may enable novel constraints on surface‐atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO2 observations and reliable representations of atmospheric transport. Since urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0002 observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along‐track OCO‐2 soundings. We compare high‐pass‐filtered (<250 km, spatial scales that primarily isolate mesoscale or finer‐scale variations) along‐track spatial variability in urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0003 and urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0004 from OCO‐2 tracks to temporal synoptic and mesoscale variability from ground‐based urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0005 and urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0006 observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along‐track, high‐frequency variability for OCO‐2 urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0007. For urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0008, both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO‐2 retrieval state vector are important drivers of the along‐track variance budget.
    Citation
    Torres, A.D.; Keppel‐Aleks, G.; Doney, S.C.; Fendrock, M.; Luis, K.; De Mazière, M.; Hase, F.; Petri, C.; Pollard, D.F.; Roehl, C.M.; Sussmann, R.; Velazco, V.A.; Warneke, T.; Wunch, D. (2019). A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals. , Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 7, 9773-9795, DOI: 10.1029/2018JD029933.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/7388
    doi: http://dx.doi.org/10.1029/2018JD029933
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV