A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals
View/ Open
Authors
Torres, A.D.
Keppel‐Aleks, G.
Doney, S.C.
Fendrock, M.
Luis, K.
De Mazière, M.
Hase, F.
Petri, C.
Pollard, D.F.
Roehl, C.M.
Sussmann, R.
Velazco, V.A.
Warneke, T.
Wunch, D.
Discipline
Earth and related Environmental sciences
Subject
atmospheric transport
greenhouse gases
CO2
mesoscale
OCO‐2
TCCON
Audience
Scientific
Date
2019Metadata
Show full item recordDescription
National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 (OCO‐2) satellite provides observations of total column‐averaged CO2 mole fractions ( urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0001) at high spatial resolution that may enable novel constraints on surface‐atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO2 observations and reliable representations of atmospheric transport. Since urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0002 observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along‐track OCO‐2 soundings. We compare high‐pass‐filtered (<250 km, spatial scales that primarily isolate mesoscale or finer‐scale variations) along‐track spatial variability in urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0003 and urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0004 from OCO‐2 tracks to temporal synoptic and mesoscale variability from ground‐based urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0005 and urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0006 observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along‐track, high‐frequency variability for OCO‐2 urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0007. For urn:x-wiley:2169897X:media:jgrd55658:jgrd55658-math-0008, both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO‐2 retrieval state vector are important drivers of the along‐track variance budget.
Citation
Torres, A.D.; Keppel‐Aleks, G.; Doney, S.C.; Fendrock, M.; Luis, K.; De Mazière, M.; Hase, F.; Petri, C.; Pollard, D.F.; Roehl, C.M.; Sussmann, R.; Velazco, V.A.; Warneke, T.; Wunch, D. (2019). A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals. , Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 7, 9773-9795, DOI: 10.1029/2018JD029933.Identifiers
Type
Article
Peer-Review
Yes
Language
eng