• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Variations in the vertical profile of ozone at four high-latitude Arctic sites from 2005 to 2017

    Thumbnail
    View/Open
    BahramvashShams(2019a).pdf (5.073Mb)
    Authors
    Bahramvash Shams, S.
    Walden, V.P.
    Petropavlovskikh, I.
    Tarasick, D.
    Kivi, R.
    Oltmans, S.
    Johnson, B.
    Cullis, P.
    Sterling, C.W.
    Thölix, L.
    Errera, Q.
    Show allShow less
    Discipline
    Earth and related Environmental sciences
    Audience
    Scientific
    Date
    2019
    Metadata
    Show full item record
    Description
    Understanding variations in atmospheric ozone in the Arctic is difficult because there are only a few long-term records of vertical ozone profiles in this region. We present 12 years of ozone profiles from February 2005 to February 2017 at four sites: Summit Station, Greenland; Ny-Ålesund, Svalbard, Norway; and Alert and Eureka, Nunavut, Canada. These profiles are created by combining ozonesonde measurements with ozone profile retrievals using data from the Microwave Limb Sounder (MLS). This combination creates a high-quality dataset with low uncertainty values by relying on in situ measurements of the maximum altitude of the ozonesondes (∼30 km) and satellite retrievals in the upper atmosphere (up to 60 km). For each station, the total column ozone (TCO) and the partial column ozone (PCO) in four atmospheric layers (troposphere to upper stratosphere) are analyzed. Overall, the seasonal cycles are similar at these sites. However, the TCO over Ny-Ålesund starts to decline 2 months later than at the other sites. In summer, the PCO in the upper stratosphere over Summit Station is slightly higher than at the other sites and exhibits a higher standard deviation. The decrease in PCO in the middle and upper stratosphere during fall is also lower over Summit Station. The maximum value of the lower- and middle-stratospheric PCO is reached earlier in the year over Eureka. Trend analysis over the 12-year period shows significant trends in most of the layers over Summit and Ny-Ålesund during summer and fall. To understand deseasonalized ozone variations, we identify the most important dynamical drivers of Arctic ozone at each level. These drivers are chosen based on mutual selected proxies at the four sites using stepwise multiple regression (SMR) analysis of various dynamical parameters with deseasonalized data. The final regression model is able to explain more than 80 % of the TCO and more than 70 % of the PCO in almost all of the layers. The regression model provides the greatest explanatory value in the middle stratosphere. The important proxies of the deseasonalized ozone time series at the four sites are tropopause pressure (TP) and equivalent latitude (EQL) at 370 K in the troposphere, the quasi-biennial oscillation (QBO) in the troposphere and lower stratosphere, the equivalent latitude at 550 K in the middle and upper stratosphere, and the eddy heat flux (EHF) and volume of polar stratospheric clouds throughout the stratosphere.
    Citation
    Bahramvash Shams, S.; Walden, V.P.; Petropavlovskikh, I.; Tarasick, D.; Kivi, R.; Oltmans, S.; Johnson, B.; Cullis, P.; Sterling, C.W.; Thölix, L.; Errera, Q. (2019). Variations in the vertical profile of ozone at four high-latitude Arctic sites from 2005 to 2017. , Atmospheric Chemistry and Physics, Vol. 19, Issue 15, 9733-9751, DOI: 10.5194/acp-19-9733-2019.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/7390
    doi: http://dx.doi.org/10.5194/acp-19-9733-2019
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV