• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physicochemical Properties and Complexity of Amino Acids beyond Our Biosphere: Analysis of the Isoleucine Group from Meteorites

    Thumbnail
    View/Open
    DaPieve(2019b).pdf (7.414Mb)
    Authors
    Da Pieve, F.
    Discipline
    Physical sciences
    Subject
    aliphatic amino acids
    meteoritic organics
    isoleucine
    density functional theory calculations
    many body perturbation theory
    electronic properties
    chirality
    Audience
    Scientific
    Date
    2019
    Metadata
    Show full item record
    Description
    Understanding the physicochemical properties of biomolecules and how these properties drive the emergence of complexity in the assembly/condensation of such systems is important for understanding a variety of reactions taking place in astrophysical environments, in particular those where polymerization processes occur on mineral surfaces or solid organic matter form in cold-chemistry processes. Here, a computational study of the structural and electronic properties of the gas and condensed phases of the isoleucine group of amino acids, found with large enantiomeric excess in Antarctic meteorites, is presented. An analysis of a statistical complexity measure related to their electronic properties, of the degree of chirality, and of the H-bond patterns is also reported. The results, based on Density Functional Theory, Many Body Perturbation Theory, and Møller–Plesset perturbation theory, show that a) the condensed amino acids keep reminiscence of structural and electronic properties of the gas phase molecules, b) the proteinogenic l-isoleucine gains in complexity and chirality upon condensation, contrary to its diastereomer, which is absent in living systems, and c) the complexity based on electronic properties can contrast with the notion of structural/geometrical complexity. The findings suggest that future scoring strategies of organic molecules should rely on both structural/geometrical molecular complexity and on the electronic properties, which in different states of matter are determined by other degrees of freedom (configurational or chiral) to a different extent, as well as on information storage capability of self-assembly configurations constrained by an atomistic chemistry perspective.
    Citation
    Da Pieve, F. (2019). Physicochemical Properties and Complexity of Amino Acids beyond Our Biosphere: Analysis of the Isoleucine Group from Meteorites. , ACS Earth and Space Chemistry, Vol. 3, Issue 9, 1955-1965, DOI: 10.1021/acsearthspacechem.9b00131.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/7522
    doi: http://dx.doi.org/10.1021/acsearthspacechem.9b00131
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV