• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison

    Thumbnail
    View/Open
    Schanz(2021a).pdf (1.663Mb)
    Authors
    Schanz, A.
    Hocke, K.
    Kämpfer, N.
    Chabrillat, S.
    Inness, A.
    Palm, M.
    Notholt, J.
    Boyd, I.
    Parrish, A.
    Kasai, Y.
    Show allShow less
    Discipline
    Earth and related Environmental sciences
    Subject
    stratospheric ozone
    diurnal ozone cycle
    photochemistry
    dynamics
    reanalysis
    MACC
    ERA-Interim
    WACCM
    SMILES
    microwave radiometry
    Audience
    Scientific
    Date
    2021
    Metadata
    Show full item record
    Description
    In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.
    Citation
    Schanz, A.; Hocke, K.; Kämpfer, N.; Chabrillat, S.; Inness, A.; Palm, M.; Notholt, J.; Boyd, I.; Parrish, A.; Kasai, Y. (2021). The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison. , Atmosphere, Vol. 12, Issue 5, A625, DOI: 10.3390/atmos12050625.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/7766
    doi: http://dx.doi.org/10.3390/atmos12050625
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV