• Login
     
    View Item 
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    •   ORFEO Home
    • Royal Belgian Institute for Space Aeronomy
    • BIRA-IASB publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Curlometer Technique and Applications

    Thumbnail
    View/Open
    Dunlop(2021b).pdf (5.024Mb)
    Authors
    Dunlop, M.W.
    Dong, X.-C.
    Wang, T.-Y.
    Eastwood, J.P.
    Robert, P.
    Haaland, S.
    Yang, Y.-Y.
    Escoubet, P.
    Rong, Z.-J.
    Shen, C.
    Fu, H.-S.
    De Keyser, J.
    Show allShow less
    Discipline
    Physical sciences
    Subject
    multi-spacecraft
    analysis methods
    magnetosphere
    Audience
    Scientific
    Date
    2021
    Metadata
    Show full item record
    Description
    We review the range of applications and use of the curlometer, initially developed to analyze Cluster multi-spacecraft magnetic field data; but more recently adapted to other arrays of spacecraft flying in formation, such as MMS small-scale, 4-spacecraft configurations; THEMIS close constellations of 3–5 spacecraft, and Swarm 2–3 spacecraft configurations. Although magnetic gradients require knowledge of spacecraft separations and the magnetic field, the structure of the electric current density (for example, its relative spatial scale), and any temporal evolution, limits measurement accuracy. Nevertheless, in many magnetospheric regions the curlometer is reliable (within certain limits), particularly under conditions of time stationarity, or with supporting information on morphology (for example, when the geometry of the large scale structure is expected). A number of large-scale regions have been covered, such as: the cross-tail current sheet, ring current, the current layer at the magnetopause and field-aligned currents. Transient and smaller scale current structures (e.g., reconnected flux tube or dipolarisation fronts) and energy transfer processes. The method is able to provide estimates of single components of the vector current density, even if there are only two or three satellites flying in formation, within the current region, as can be the case when there is a highly irregular spacecraft configuration. The computation of magnetic field gradients and topology in general includes magnetic rotation analysis and various least squares approaches, as well as the curlometer, and indeed the added inclusion of plasma measurements and the extension to larger arrays of spacecraft have recently been considered.
    Citation
    Dunlop, M.W.; Dong, X.-C.; Wang, T.-Y.; Eastwood, J.P.; Robert, P.; Haaland, S.; Yang, Y.-Y.; Escoubet, P.; Rong, Z.-J.; Shen, C.; Fu, H.-S.; De Keyser, J. (2021). Curlometer Technique and Applications. , Journal of Geophysical Research: Space Physics, Vol. 126, Issue 11, e2021JA029538, DOI: 10.1029/2021JA029538.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/9870
    doi: http://dx.doi.org/10.1029/2021JA029538
    scopus:
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV