• Login
     
    View Item 
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A probabilistic approach to forecast the uncertainty with ensemble spread

    Thumbnail
    View/Open
    Published (1.499Mb)
    Authors
    Van Schaeybroeck, Bert
    Discipline
    Earth and related Environmental sciences
    Subject
    numerical weather forecasting
    ensemble forecasting
    uncertainty estimation
    Audience
    Scientific
    Date
    2015-07-02
    Publisher
    American Meteorological Society
    Metadata
    Show full item record
    Description
    The ensemble spread is often used as a measure of forecast quality or uncertainty. However, it is not clear whether the spread is a good measure of uncertainty and how the spread–error relationship can be properly assessed. Even for perfectly reliable forecasts the error for a given spread varies considerably in amplitude and the spread–error relationship is therefore strongly heteroscedastic. This implies that the forecast of the uncertainty based only on the knowledge of spread should itself be probabilistic. Simple probabilistic models for the prediction of the error as a function of the spread are introduced and evaluated for different spread–error metrics. These forecasts can be verified using probabilistic scores and a methodology is proposed to determine what the impact is of estimating uncertainty based on the spread only. A new method is also proposed to verify whether the flow-dependent spread is a realistic indicator of uncertainty. This method cancels the heteroscedasticity by a logarithmic transformation of both spread and error, after which a linear regression can be applied. An ensemble system can be identified as perfectly reliable with respect to its spread. The approach is tested on the ECMWF Ensemble Prediction System over Europe. The use of spread only does not lead to skill degradation, and replacing the raw ensemble by a Gaussian distribution consistently improves scores. The influences of non-Gaussian ensemble statistics, small ensemble sizes, limited predictability, and different spread–error metrics are investigated and the relevance of binning is discussed. The upper-level spread–error relationship is consistent with a perfectly reliable system for intermediate lead times.
    Citation
    Van Schaeybroeck, Bert (2015-07-02). A probabilistic approach to forecast the uncertainty with ensemble spread. , Monthly Weather Review, Vol. 144, Issue 1, 451, American Meteorological Society.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/7188
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV