Towards Detection of Road Weather Conditions using Large-Scale Vehicle Fleets
View/ Open
Authors
Mercelis, Siegfried
Watelet, Sylvain
Casteels, Wim
Bogaerts, Toon
Van den Bergh, Joris
Reyniers, Maarten
Hellinckx, Peter
Discipline
Earth and related Environmental sciences
Subject
Anomaly Detection, Vehicle Data, Can-Bus, Road Safety, Road Weather Conditions, Road Weather Models
Audience
Scientific
Date
2020-06-30Publisher
IEEE
Metadata
Show full item recordDescription
Bad weather conditions such as heavy rain, black ice and fog can have a significant impact on road safety. Currently vehicle safety technologies such as the electronic stability program work reactive to hazardous situations. In this paper, we propose the use of crowd-sourced vehicle data to improve road-weather models and provide real-time local warnings for weather-related hazards. We present our initial results from a field test where we used vehicle CAN-bus data and low cost external sensors to observe local weather phenomena. The CAN-bus contains, among others, data on vehicle dynamics such as wheel speeds. Our approach is to isolate anomalies within these signals. Our initial research suggests some anomalies are weather related and can be used to describe local weather phenomena. Furthermore, the externally installed sensors provide more information on which we can build our assumptions. The results show that the gathered measurements are consistent with the reliable observations from road weather stations.
Citation
Mercelis, Siegfried; Watelet, Sylvain; Casteels, Wim; Bogaerts, Toon; Van den Bergh, Joris; Reyniers, Maarten; Hellinckx, Peter (2020-06-30). Towards Detection of Road Weather Conditions using Large-Scale Vehicle Fleets. , 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), IEEE, DOI: 10.1109/VTC2020-Spring48590.2020.9128484.Identifiers
Type
Conference
Peer-Review
Yes
Language
eng