• Login
     
    View Item 
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dipole representation of the Earth's main magnetic field

    Authors
    De Meyer, F.
    Discipline
    Earth and related Environmental sciences
    Subject
    Archaeomagnetism
    Archaeomagnetic dating
    Belgium
    Iron working site
    Goethite
    Rock magnetism
    Audience
    General Public
    Scientific
    Date
    2002
    Publisher
    IRM
    KMI
    RMI
    Metadata
    Show full item record
    Description
    Archaeological burnt materials and structures provide unique records of direction and intensity of the Earth’s magnetic field in the past, elements that can be absolutely determined applying the archaeomagnetic method. At present, such records within Europe are irregular in both space and time. Presented here is the archaeomagnetic investigation of three kilns that were discovered during a preventive excavation of an archaeological site considered of High Middle Age in Corroy-le-Grand (Belgium) and that are assumed to be related to iron working activities. Archaeological context dating points to kiln operation between the second half of the 10th century until the 12th century AD. As the site is not far from Paris, declination and inclination of the characteristic remanent magnetisation of the kilns were compared with the standard directional secular variation curve for France in order to propose archaeomagnetic dates for the cessation of kiln operation by using probability densities [Lanos, Ph.; 2004. Bayesian inference of calibration curves, application to archaeomagnetism. In: Buck, C.E.; Millard, A.R. (Eds.), Tools for Constructing Chronologies: Crossing Disciplinary Boundaries. Lecture Notes in Statistics. Springer Verlag, London, pp. 43–82; Lanos, Ph.; Le Goff, M.; Kovacheva, M.; Schnepp, E.;2005. Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophysical Journal International 160 (2), 440–476]. This confirms the presumed archaeological age and resulted in more precise time constraints for the last kiln operation. Rock magnetic techniques, proposed by Spassov and Hus [Spassov, S.; Hus, J.; 2006. Estimating baking temperatures in a Roman pottery kiln by rock magnetic properties: implications of thermochemical alteration for archaeointensity determinations. Geophysical Journal International 167, 592–604], were applied to examine the suitability of the burnt materials from the kilns for archaeointensity determinations and to increase the success rate of the Thellier–Thellier double heating technique. An average value for the field intensity of 69.4 ± 2.5 lT was estimated from 10 specimens from a single kiln, which corresponds reasonably well with published data for Western Europe
    Citation
    De Meyer, F. (2002). Dipole representation of the Earth's main magnetic field. , Issue 0, IRM,
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/8601
    Type
    Article
    Peer-Review
    Not pertinent
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV