• Login
     
    View Item 
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Short-Term Dynamics of Model Errors

    Authors
    Vannitsem, S.
    Toth, Z.
    Discipline
    Earth and related Environmental sciences
    Subject
    Dynamics
    Model Error
    Audience
    General Public
    Scientific
    Date
    2002
    Publisher
    IRM
    KMI
    RMI
    Metadata
    Show full item record
    Description
    The natural instability of the atmosphere is at the origin of the rapid amplification of errors coming from the uncertainty on the initial conditions and from the imperfect representation (the model) of the atmospheric dynamics. In this paper, the short-term dynamics of model error is examined in the context of low-order chaotic dynamical systems. A mathematical model describing the dynamics of this error is first derived where some of the key ingredients of its erratic behavior are incorporated, namely, the variability of the local Lyapunov exponents and of the model error source term along the dominant unstable direction. The analysis of this simplified equation indicates that depending on the nature of the model error sources (here limited to a white noise or an Ornstein–Uhlenbeck process), the mean square error initially follows either a linear or a quadratic evolution, the latter being generic. The numerical analysis of the Lorenz 1984 low-order atmospheric system, in which the model error source is associated with the inaccurate estimate of one of its parameters, supports the main features demonstrated by the simplified mathematical model. However, it also reveals a more involved behavior of the mean square error, which can be traced back to some intrinsic properties of the underlying dynamics not incorporated in the simplified model. The role of the truncation of the small scales of the flow on the dynamics of the larger scales is also studied in two spatially distributed systems. In this context, the mean square error closely follows a quadratic evolution for short times. In the light of these results, the classical view of the linear evolution of the mean square error advanced thus far in the literature should be reassessed.
    Citation
    Vannitsem, S.; Toth, Z. (2002). Short-Term Dynamics of Model Errors. , Issue J. Atmos. Sci.; 59, pp. 2594-2604, IRM,
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/8607
    Type
    Article
    Peer-Review
    Not pertinent
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV