• Login
     
    View Item 
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A multi-model analysis of vertical ozone profiles

    Authors
    Jonson, J. E.
    Stohl, A.
    Fiore, A. M.
    Hess, P.
    Szopa, S.
    Wild, O.
    Zeng, G.
    Dentener, F. J.
    Lupu, A.
    Schultz, M. G.
    Duncan, B. N.
    Sudo, K.
    Wind, P.
    Schulz, M.
    Marmer, E.
    Cuvelier, C.
    Keating, T.
    Zuber, A.
    Valdebenito, A.
    Dorokhov, V.
    De Backer, H.
    Davies, J.
    Chen, G. H.
    Johnson, B.
    Tarasick, D. W.
    Stübi, R.
    Newchurch, M.J.
    von der Gathen, P.
    Steinbrecht, W.
    Claude, H.
    Show allShow less
    Discipline
    Earth and related Environmental sciences
    Subject
    Ozone
    anthropogenic source
    Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-range Transboundary Air Pollution (LRTAP)
    Ozone
    FLEXPART Lagrangian particle dispersion model
    Audience
    General Public
    Scientific
    Date
    2010
    Publisher
    IRM
    KMI
    RMI
    Metadata
    Show full item record
    Description
    A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-range Transboundary Air Pollution (LRTAP). Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations. In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further. At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by region. Intercontinental transport of ozone is finally determined based on differences in model ensemble calculations. With emissions perturbed by 20% per region, calculated intercontinental contributions to ozone in the free troposphere range from less than 1 ppb to 3 ppb, with small contributions in winter. The results are corroborated by the retroplume calculations. At several locations the seasonal contributions to ozone in the free troposphere from intercontinental transport differ from what was shown earlier at the surface using the same dataset. The large spread in model results points to a need of further evaluation of the chemical and physical processes in order to improve the credibility of global model results.
    Citation
    Jonson, J. E.; Stohl, A.; Fiore, A. M.; Hess, P.; Szopa, S.; Wild, O.; Zeng, G.; Dentener, F. J.; Lupu, A.; Schultz, M. G.; Duncan, B. N.; Sudo, K.; Wind, P.; Schulz, M.; Marmer, E.; Cuvelier, C.; Keating, T.; Zuber, A.; Valdebenito, A.; Dorokhov, V.; De Backer, H.; Davies, J.; Chen, G. H.; Johnson, B.; Tarasick, D. W.; Stübi, R.; Newchurch, M.J.; von der Gathen, P.; Steinbrecht, W.; Claude, H. (2010). A multi-model analysis of vertical ozone profiles. , Issue Atmospheric Chemistry and Physics, 10, 5759-5783, IRM, DOI: doi:10.5194/acp-10-5759-2010,.
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/8891
    doi: http://dx.doi.org/doi:10.5194/acp-10-5759-2010,
    Type
    Article
    Peer-Review
    Not pertinent
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV