Reliable probabilities through statistical post-processing of ensemble forecasts
Authors
Van Schaeybroeck, B.
Vannitsem, S.
Discipline
Earth and related Environmental sciences
Subject
Climatological reliability
Lorenz 96 model
EVMOS
Audience
General Public
Scientific
Date
2012Publisher
IRM
KMI
RMI
Metadata
Show full item recordDescription
We develop post-processing approaches based on linear regression that make ensemble forecasts more reliable. First of all we enforce climatological reliability (CR) in the sense that the total variability of the forecast is equal the variability of the observations. Second, we impose ensemble reliability (ER) such that the spread around the ensemble mean of the observation coincides with the one of the ensemble members. Since, generally, different ensembles have different sizes, standard post-processing methods tend to overcorrect ensembles with large spreads. By taking variable values of the error variances, our forecast becomes more reliable at short lead times as reflected by a flatter rank histogram. We illustrate our findings using the Lorenz 1963 model.
Citation
Van Schaeybroeck, B.; Vannitsem, S. (2012). Reliable probabilities through statistical post-processing of ensemble forecasts. , Issue Springer proceedings on complexity, XVI, 347-352, IRM,Identifiers
Type
Article
Peer-Review
Not pertinent
Language
eng