• Login
     
    View Item 
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon–chemistry–climate model

    Authors
    Unge,r N.
    Harper, K.
    Zheng, Y.
    Kiang, N. Y.
    Aleinov, I.
    Arneth, A.
    Schurgers, G.
    Amelynck, C.
    Goldstein, A.
    Guenther, A.
    Heinesch, B.
    Hewitt, C. N.
    Karl, T.
    Laffineur, Q.
    Langford, B.
    McKinney, K. A.
    Misztal, P.
    Potosnak, M.
    Rinne, J.
    Pressley, S.
    Schoon, N.
    Serça, D.
    Show allShow less
    Discipline
    Earth and related Environmental sciences
    Subject
    Natural sciences
    Earth and related Environmental sciences
    Audience
    General Public
    Scientific
    Date
    2013
    Publisher
    IRM
    KMI
    RMI
    Metadata
    Show full item record
    Description
    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar–Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64–96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr−1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.
    Citation
    Unge,r N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, K. A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serça, D. (2013). Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon–chemistry–climate model. , Issue Atmos. Chem. Phys., 13,, 10243-10269, IRM,
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/8988
    Type
    Article
    Peer-Review
    Yes
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV