• Login
     
    View Item 
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    •   ORFEO Home
    • Royal Meteorological Institute of Belgium
    • RMI publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    "Ensemble dispersion forecasting, Part I: Concept, approach and indicators"

    Authors
    Galmarini, S.
    Bianconi, R.
    Klug, W.
    Mikkelsen, T.
    Addis, R.
    Andronopoulos, S.
    Astrup, P.
    Baklanov, A.
    Bartnicki, J.
    Bartzis, J.C.
    Bellasio, R.
    Bompay, F.
    Buckley, R.
    Bouzom, M.
    Champion, H.
    Amours, R.D.
    Davakis, E.
    Eleveld, H.
    Geertsema, G.T.
    Glaab, H.
    Kollax, M.
    Ilvonen, M.
    Manning, A.
    Pechinger, U.
    Persson, C.
    Polreich, E.
    Potemski, S.
    Prodanova, M.
    Saltbones, J.
    Slaper, H.
    Sofiev, M.A.
    Syrakov, D.
    Sorensen, J. H.
    Van der Auwera, L.
    Valkama, I.
    Zelazny, R.
    Show allShow less
    Discipline
    Earth and related Environmental sciences
    Subject
    dispersion
    forecast
    analysis
    Audience
    General Public
    Scientific
    Date
    2004
    Publisher
    IRM
    KMI
    RMI
    Metadata
    Show full item record
    Description
    The paper presents an approach to the treatment and analysis of long-range transport and dispersion model forecasts. Long-range is intended here as the space scale of the order of few thousands of kilometers known also as continental scale. The method is called multi-model ensemble dispersion and is based on the simultaneous analysis of several model simulations by means of ad-hoc statistical treatments and parameters. The models considered in this study are operational long-range transport and dispersion models used to support decision making in various countries in case of accidental releases of harmful volatile substances, in particular radionuclides to the atmosphere. The ensemble dispersion approach and indicators provide a way to reduce several model results to few concise representations that include an estimate of the models’ agreement in predicting a specific scenario. The parameters proposed are particularly suited for long-range transport and dispersion models although they can also be applied to short-range dispersion and weather fields.
    Citation
    Galmarini, S.; Bianconi, R.; Klug, W.; Mikkelsen, T.; Addis, R.; Andronopoulos, S.; Astrup, P.; Baklanov, A.; Bartnicki, J.; Bartzis, J.C.; Bellasio, R.; Bompay, F.; Buckley, R.; Bouzom, M.; Champion, H.; Amours, R.D.; Davakis, E.; Eleveld, H.; Geertsema, G.T.; Glaab, H.; Kollax, M.; Ilvonen, M.; Manning, A.; Pechinger, U.; Persson, C.; Polreich, E.; Potemski, S.; Prodanova, M.; Saltbones, J.; Slaper, H.; Sofiev, M.A.; Syrakov, D.; Sorensen, J. H.; Van der Auwera, L.; Valkama, I.; Zelazny, R. (2004). "Ensemble dispersion forecasting, Part I: Concept, approach and indicators". , Issue Atmospheric Environment,38,28, pp. 4607-4617, IRM,
    Identifiers
    uri: https://orfeo.belnet.be/handle/internal/8670
    Type
    Article
    Peer-Review
    Not pertinent
    Language
    eng
    Links
    NewsHelpdeskBELSPO OA Policy

    Browse

    All of ORFEOCommunities & CollectionsBy Issue DateAuthorsTitlesDisciplinesThis CollectionBy Issue DateAuthorsTitlesDisciplines
     

    DSpace software copyright © 2002-2016  DuraSpace
    Send Feedback | Cookie Information
    Theme by 
    Atmire NV